Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Nucleic Acids Res ; 51(15): 7832-7850, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37403778

RESUMEN

Maize (Zea mays) kernel size is an important factor determining grain yield; although numerous genes regulate kernel development, the roles of RNA polymerases in this process are largely unclear. Here, we characterized the defective kernel 701 (dek701) mutant that displays delayed endosperm development but normal vegetative growth and flowering transition, compared to its wild type. We cloned Dek701, which encoded ZmRPABC5b, a common subunit to RNA polymerases I, II and III. Loss-of-function mutation of Dek701 impaired the function of all three RNA polymerases and altered the transcription of genes related to RNA biosynthesis, phytohormone response and starch accumulation. Consistent with this observation, loss-of-function mutation of Dek701 affected cell proliferation and phytohormone homeostasis in maize endosperm. Dek701 was transcriptionally regulated in the endosperm by the transcription factor Opaque2 through binding to the GCN4 motif within the Dek701 promoter, which was subjected to strong artificial selection during maize domestication. Further investigation revealed that DEK701 interacts with the other common RNA polymerase subunit ZmRPABC2. The results of this study provide substantial insight into the Opaque2-ZmRPABC5b transcriptional regulatory network as a central hub for regulating endosperm development in maize.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Endospermo , Zea mays , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Endospermo/genética , Endospermo/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/metabolismo
2.
Plant Biotechnol J ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761386

RESUMEN

Seed vigour, including rapid, uniform germination and robust seedling establishment under various field conditions, is becoming an increasingly essential agronomic trait for achieving high yield in crops. However, little is known about this important seed quality trait. In this study, we performed a genome-wide association study to identify a key transcription factor ZmRap2.7, which regulates seed vigour through transcriptionally repressing expressions of three ABA signalling genes ZmPYL3, ZmPP2C and ZmABI5 and two phosphatidylethanolamine-binding genes ZCN9 and ZCN10. In addition, ZCN9 and ZCN10 proteins could interact with ZmPYL3, ZmPP2C and ZmABI5 proteins, and loss-of-function of ZmRap2.7 and overexpression of ZCN9 and ZCN10 reduced ABA sensitivity and seed vigour, suggesting a complex regulatory network for regulation of ABA signalling mediated seed vigour. Finally, we showed that four SNPs in ZmRap2.7 coding region influenced its transcriptionally binding activity to the downstream gene promoters. Together with previously identified functional variants within and surrounding ZmRap2.7, we concluded that the distinct allelic variations of ZmRap2.7 were obtained independently during maize domestication and improvement, and responded separately for the diversities of seed vigour, flowering time and brace root development. These results provide novel genes, a new regulatory network and an evolutional mechanism for understanding the molecular mechanism of seed vigour.

3.
Plant Physiol ; 192(1): 170-187, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36722259

RESUMEN

Assembly of the functional complexes of the mitochondrial respiratory chain requires sophisticated and efficient regulatory mechanisms. In plants, the subunit composition and assembly factors involved in the biogenesis of cytochrome c oxidase (complex IV) are substantially less defined than in mammals and yeast. In this study, we cloned maize (Zea mays) Small kernel 11 (Smk11) via map-based cloning. Smk11 encodes a mitochondria-localized tetratricopeptide repeat protein. Disruption of Smk11 severely affected the assembly and activity of mitochondrial complex IV, leading to delayed plant growth and seed development. Protein interactions studies revealed that SMK11 might interact with four putative complex IV assembly factors, Inner membrane peptidase 1A (ZmIMP1A), MYB domain protein 3R3 (ZmMYB3R-3), cytochrome c oxidase 23 (ZmCOX23), and mitochondrial ferredoxin 1 (ZmMFDX1), among which ZmMFDX1 might interact with subunits ZmCOX6a and ZmCOX-X1; ZmMYB3R-3 might also interact with ZmCOX6a. The mutation of SMK11 perturbed the normal assembly of these subunits, leading to the inactivation of complex IV. The results of this study revealed that SMK11 serves as an accessory assembly factor required for the normal assembly of subunits into complex IV, which will accelerate the elucidation of the assembly of complex IV in plant mitochondria.


Asunto(s)
Zea mays , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Mamíferos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Zea mays/metabolismo
4.
Physiol Plant ; 176(3): e14386, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887947

RESUMEN

Silk of maize (Zea mays L.) contains diverse metabolites with complicated structures and functions, making it a great challenge to explore the mechanisms of metabolic regulation. Genome-wide identification of silk-preferential genes and investigation of their expression regulation provide an opportunity to reveal the regulatory networks of metabolism. Here, we applied the expression quantitative trait locus (eQTL) mapping on a maize natural population to explore the regulation of gene expression in unpollinated silk of maize. We obtained 3,985 silk-preferential genes that were specifically or preferentially expressed in silk using our population. Silk-preferential genes showed more obvious expression variations compared with broadly expressed genes that were ubiquitously expressed in most tissues. We found that trans-eQTL regulation played a more important role for silk-preferential genes compared to the broadly expressed genes. The relationship between 38 transcription factors and 85 target genes, including silk-preferential genes, were detected. Finally, we constructed a transcriptional regulatory network around the silk-preferential gene Bx10, which was proposed to be associated with response to abiotic stress and biotic stress. Taken together, this study deepened our understanding of transcriptome variation in maize silk and the expression regulation of silk-preferential genes, enhancing the investigation of regulatory networks on metabolic pathways.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Sitios de Carácter Cuantitativo , Zea mays , Zea mays/genética , Zea mays/metabolismo , Sitios de Carácter Cuantitativo/genética , Regulación de la Expresión Génica de las Plantas/genética , Seda/genética , Genoma de Planta/genética , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética
5.
Phys Chem Chem Phys ; 26(6): 4794-4811, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38259226

RESUMEN

In recent years, remarkable advancements have been achieved in the field of halide perovskite solar cells (PSCs). However, the commercialization of PSCs has been impeded by challenges such as Pb leakage and the instability of hybrid organic-inorganic perovskites (HOIPs). Hence, the future lies in the development of environmentally friendly inorganic lead-free halide perovskites (LFHPs) based on elements like Sn, Ge, Bi, Sb, and Cu, which show great promise for photovoltaic applications. However, LFHP photovoltaic cells still face challenges such as low efficiency, poor film quality, and stability in comparison to HOIPs. These limitations significantly hinder their further development. To address these issues, element doping strategies, including cationic and anionic doping, as well as the use of additives, are frequently employed. These strategies aim to improve film quality, passivate defects, reduce the band gap, and enhance device performance and stability. In this paper, we aim to provide a comprehensive review of the recent research progress in doping strategies for LFHPs.

6.
Bioorg Chem ; 150: 107560, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38878752

RESUMEN

Leveraging the elevated hydrogen peroxide (H2O2) levels in cancer cells, H2O2-activated prodrugs have emerged as promising candidates for anticancer therapy. Notably, the efficacy of these prodrugs is influenced by the varying H2O2 levels across different cancer cell types. In this context, we have developed a novel H2O2-activated prodrug, PBE-AMF, which incorporates a phenylboronic ester (PBE) motif. Upon H2O2 exposure, PBE-AMF liberates the fluorescent and cytotoxic molecule amonafide (AMF), functioning as a theranostic agent. Our studies with PBE-AMF have demonstrated a positive correlation between intracellular H2O2 concentration and anticancer activity. The breast cancer cell line MDA-MB-231, characterized by high H2O2 content, showed the greatest susceptibility to this prodrug. Subsequently, we replaced the PBE structure with phenylboronic acid (PBA) to obtain the prodrug PBA-AMF, which exhibited enhanced stability, aqueous solubility, and tumor cell selectivity. This selectivity is attributed to its affinity for sialic acid, which is overexpressed on the surfaces of cancer cells. In vitro assays confirmed that PBA-AMF potently and selectively inhibited the proliferation of MDA-MB-231 cells, while sparing non-cancerous MCF-10A cells. Mechanistic investigations indicated that PBA-AMF impedes tumor proliferation by inhibiting DNA synthesis, reducing ATP levels, inducing apoptosis, and arresting the cell cycle. Our work broadens the range of small molecule H2O2-activated anticancer theranostic prodrugs, which are currently limited in number. We anticipate that the applications of PBA-AMF will extend to a wider spectrum of tumors and other diseases associated with increased H2O2 levels, thereby offering new horizons in cancer diagnostics and treatment.

7.
Sensors (Basel) ; 24(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38475184

RESUMEN

The development of many modern critical infrastructures calls for the integration of advanced technologies and algorithms to enhance the performance, efficiency, and reliability of network systems [...].

8.
Plant J ; 111(6): 1595-1608, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35860955

RESUMEN

cis-Regulatory variations contribute to trait evolution and adaptation during crop domestication and improvement. As the most important harvested organ in maize (Zea mays L.), kernel size has undergone intensive selection for size. However, the associations between maize kernel size and cis-regulatory variations remain unclear. We chose two independent association populations to dissect the genetic architecture of maize kernel size together with transcriptomic and genotypic data. The resulting phenotypes reflected a strong influence of population structure on kernel size. Compared with genome-wide association studies (GWASs), which accounted for population structure and relatedness, GWAS based on a naïve or simple linear model revealed additional associated single-nucleotide polymorphisms significantly involved in the conserved pathways controlling seed size in plants. Regulation analyses through expression quantitative trait locus mapping revealed that cis-regulatory variations likely control kernel size by fine-tuning the expression of proximal genes, among which ZmKL1 (GRMZM2G098305) was transgenically validated. We also proved that the pyramiding of the favorable cis-regulatory variations has contributed to the improvement of maize kernel size. Collectively, our results demonstrate that cis-regulatory variations, together with their regulatory genes, provide excellent targets for future maize improvement.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Expresión Génica , Genes Reguladores , Fenotipo , Zea mays/metabolismo
9.
Theor Appl Genet ; 136(1): 16, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36662257

RESUMEN

KEY MESSAGE: Long intergenic non-coding RNA (lincRNA), cis-acting expression quantitative trait locus (cis-eQTL), maize, regulatory evolution. The law of genetic variation during domestication explains the evolutionary mechanism and provides a theoretical basis for improving existing varieties of maize. Previous studies focused on exploiting regulatory variations controlling the expression of protein-coding genes rather than of non-protein-coding genes. Here, we examined the genetic and evolutionary features of long non-coding RNAs from intergenic regions (long intergenic non-coding RNAs, lincRNAs) using population-scale transcriptome data and identified 1168 lincRNAs with cis-acting expression quantitative trait loci (cis-eQTLs). We found that lincRNAs are more likely to be regulated by cis-eQTLs, which exert stronger effects than the protein-coding genes. During maize domestication and improvement, upregulated alleles of lincRNAs, which originated from both standing variation and new mutation, accumulate more frequently and show larger effect sizes than the coding genes. A stronger signature of genetic differentiation was observed in their regulatory regions compared to those of randomly sampled lincRNAs. In addition, we found that cis-regulatory differentiation of lincRNAs is related to the sequence conservation of lincRNA transcripts. Non-conserved lincRNAs more tend to gain upregulated alleles and show a stronger relationship with selected traits than conserved lincRNAs between maize and its wild relatives. Our findings in maize improve the understanding of cis-regulatory variation in lincRNA genes during domestication and improvement and provide an effective approach for prioritizing candidates for further investigation.


Asunto(s)
ARN Largo no Codificante , Transcriptoma , ARN Largo no Codificante/genética , Zea mays/genética , Zea mays/metabolismo , Genómica , Sitios de Carácter Cuantitativo
10.
Theor Appl Genet ; 137(1): 7, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093101

RESUMEN

KEY MESSAGE: A novel light-dependent dominant lesion mimic mutant with enhanced multiple disease resistance was physiologically, biochemically, and genetically characterized; the causal gene was fine mapped to a 909 kb interval containing 38 genes. Identification of genes that confer multiple disease resistance (MDR) is crucial for the improvement of maize disease resistance. However, very limited genes are identified as MDR genes in maize. In this study, we characterized a dominant disease lesion mimics 8 (Les8) mutant that had chlorotic lesions on the leaves and showed enhanced resistance to both curvularia leaf spot and southern leaf blight. Major agronomic traits were not obviously altered, while decreased chlorophyll content was observed in the mutant, and the genetic effect of the Les8 mutation was stable in different genetic backgrounds. By BSR-seq analysis and map-based cloning, the LES8 gene was mapped into a 909 kb region containing 38 candidate genes on chromosome 9 wherein no lesion mimic or disease-resistance genes were previously reported. Using transcriptomics analysis, we found that genes involved in defense responses and secondary metabolite biosynthesis were enriched in the significantly up-regulated genes, while genes involved in photosynthesis and carbohydrate-related pathways were enriched in the significantly down-regulated genes in Les8. In addition, there was an overaccumulation of jasmonic acid and lignin but not salicylic acid in Les8. Taken together, this study revealed candidate genes and potential mechanism underlying Les8-conferred MDR in maize.


Asunto(s)
Curvularia , Zea mays , Mapeo Cromosómico , Curvularia/genética , Zea mays/genética , Resistencia a la Enfermedad/genética , Genes de Plantas , Hojas de la Planta/genética , Enfermedades de las Plantas/genética
11.
Int J Mol Sci ; 24(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298102

RESUMEN

Heterosis is a complex biological phenomenon regulated by genetic variations and epigenetic changes. However, the roles of small RNAs (sRNAs), an important epigenetic regulatory element, on plant heterosis are still poorly understood. Here, an integrative analysis was performed with sequencing data from multi-omics layers of maize hybrids and their two homologous parental lines to explore the potential underlying mechanisms of sRNAs in plant height (PH) heterosis. sRNAome analysis revealed that 59 (18.61%) microRNAs (miRNAs) and 64,534 (54.00%) 24-nt small interfering RNAs (siRNAs) clusters were non-additively expressed in hybrids. Transcriptome profiles showed that these non-additively expressed miRNAs regulated PH heterosis through activating genes involved in vegetative growth-related pathways while suppressing those related to reproductive and stress response pathways. DNA methylome profiles showed that non-additive methylation events were more likely to be induced by non-additively expressed siRNA clusters. Genes associated with low-parental expression (LPE) siRNAs and trans-chromosomal demethylation (TCdM) events were enriched in developmental processes as well as nutrients and energy metabolism, whereas genes associated with high-parental expression (HPE) siRNAs and trans-chromosomal methylation (TCM) events were gathered in stress response and organelle organization pathways. Our results provide insights into the expression and regulation patterns of sRNAs in hybrids and help to elucidate their potential targeting pathways contributing to PH heterosis.


Asunto(s)
Vigor Híbrido , MicroARNs , Vigor Híbrido/genética , Zea mays/genética , Zea mays/metabolismo , Multiómica , Transcriptoma , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Hibridación Genética
12.
Plant Cell Physiol ; 63(8): 1156-1167, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35771678

RESUMEN

Epialleles, the heritable epigenetic variants that are not caused by changes in DNA sequences, can broaden genetic and phenotypic diversity and benefit to crop breeding, but very few epialleles related to agricultural traits have been identified in maize. Here, we cloned a small kernel mutant, smk-wl10, from maize, which encoded a tubulin-folding cofactor B (ZmTFCB) protein. Expression of the ZmTFCB gene decreased in the smk-wl10 mutant, which arrested embryo, endosperm and basal endosperm transfer layer developments. Overexpression of ZmTFCB could complement the defective phenotype of smk-wl10. No nucleotide sequence variation in ZmTFCB could be found between smk-wl10 and wild type (WT). Instead, we detected hypermethylation of nucleotide CHG (where H is A, C or T nucleotide) sequence contexts and increased level of histone H3K9me2 methylation in the upstream sequence of ZmTFCB in smk-wl10 compared with WT, which might respond to the attenuating transcription of ZmTFCB. In addition, yeast two-hybrid and bimolecular fluorescence complementation assays identified a strong interaction between ZmTFCB and its homolog ZmTFCE. Thus, our work identifies a novel epiallele of the maize ZmTFCB gene, which might represent a common phenomenon in the epigenetic regulation of important traits such as kernel development in maize.


Asunto(s)
Tubulina (Proteína) , Zea mays , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Fitomejoramiento , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Zea mays/metabolismo
13.
J Exp Bot ; 73(12): 3991-4007, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35303096

RESUMEN

Multiple disease resistance (MDR) in maize has attracted increasing attention. However, the interplay between cell death and metabolite changes and their contributions to MDR remains elusive in maize. In this study, we identified a mutant named as lesion mimic 30 (les30) that showed 'suicidal' lesion formation in the absence of disease and had enhanced resistance to the fungal pathogen Curvularia lunata. Using map-based cloning, we identified the causal gene encoding pheophorbide a oxidase (PAO), which is known to be involved in chlorophyll degradation and MDR, and is encoded by LETHAL LEAF SPOT1 (LLS1). LLS1 was found to be induced by both biotic and abiotic stresses. Transcriptomics analysis showed that genes involved in defense responses and secondary metabolite biosynthesis were mildly activated in leaves of the les30 mutant without lesions, whilst they were strongly activated in leaves with lesions. In addition, in les30 leaves with lesions, there was overaccumulation of defense-associated phytohormones including jasmonic acid and salicylic acid, and of phytoalexins including phenylpropanoids, lignin, and flavonoids, suggesting that their biosynthesis was activated in a lesion-dependent manner. Taken together, our study implies the existence of an interactive amplification loop of interrupted chlorophyll degradation, cell death, expression of defense-related genes, and metabolite changes that results in suicidal lesion formation and MDR, and this has the potential to be exploited by genetic manipulation to improve maize disease resistance.


Asunto(s)
Resistencia a la Enfermedad , Zea mays , Alelos , Muerte Celular/fisiología , Clorofila/metabolismo , Resistencia a la Enfermedad/genética , Humanos , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Zea mays/metabolismo
14.
Phys Chem Chem Phys ; 24(47): 28662-28679, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36444533

RESUMEN

Novel Ag-based thin film solar cells have attracted extensive attention in recent years in the photovoltaic (PV) field due to their outstanding properties like a high light absorption coefficient, low toxicity, abundance, and an appropriate band gap. The emerging Ag-based thin film materials such as Ag2S, AgBiS2, Ag3CuS2, AgInS2, AgBiSe2, Ag2ZnSnS4, Ag(In1-x,Gax)Se2, AgaBibIc, Cs2AgBiBr6, and Cu2AgBiI6 are becoming ideal materials for light absorbing layers in the new generation of PV devices. Although the efficiency of ATFSCs has improved significantly in recent years, it is much lower than those of other PV devices. The relatively low efficiency of ATFSCs is mainly caused by structural defects such as poor crystallinity, voids, and instability which occur during the preparation of light absorbing layers. This paper defines the concept and classification of Ag-based materials and introduces in detail a thin film preparation method by overcoming structural defects. Finally, the vision of achieving high-efficiency ATFSCs by improving structural defects is proposed.

15.
Sensors (Basel) ; 22(19)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36236574

RESUMEN

Ground-object classification using remote-sensing images of high resolution is widely used in land planning, ecological monitoring, and resource protection. Traditional image segmentation technology has poor effect on complex scenes in high-resolution remote-sensing images. In the field of deep learning, some deep neural networks are being applied to high-resolution remote-sensing image segmentation. The DeeplabV3+ network is a deep neural network based on encoder-decoder architecture, which is commonly used to segment images with high precision. However, the segmentation accuracy of high-resolution remote-sensing images is poor, the number of network parameters is large, and the cost of training network is high. Therefore, this paper improves the DeeplabV3+ network. Firstly, MobileNetV2 network was used as the backbone feature-extraction network, and an attention-mechanism module was added after the feature-extraction module and the ASPP module to introduce focal loss balance. Our design has the following advantages: it enhances the ability of network to extract image features; it reduces network training costs; and it achieves better semantic segmentation accuracy. Experiments on high-resolution remote-sensing image datasets show that the mIou of the proposed method on WHDLD datasets is 64.76%, 4.24% higher than traditional DeeplabV3+ network mIou, and the mIou on CCF BDCI datasets is 64.58%. This is 5.35% higher than traditional DeeplabV3+ network mIou and outperforms traditional DeeplabV3+, U-NET, PSP-NET and MACU-net networks.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Tecnología de Sensores Remotos , Atención , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Tecnología de Sensores Remotos/métodos
16.
Int J Mol Sci ; 23(9)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35563470

RESUMEN

Dissecting the genetic basis of yield traits in hybrid populations and identifying the candidate genes are important for molecular crop breeding. In this study, a BC1F3:4 population, the line per se (LPS) population, was constructed by using elite inbred lines Zheng58 and PH4CV as the parental lines. The population was genotyped with 55,000 SNPs and testcrossed to Chang7-2 and PH6WC (two testers) to construct two testcross (TC) populations. The three populations were evaluated for hundred kernel weight (HKW) and yield per plant (YPP) in multiple environments. Marker-trait association analysis (MTA) identified 24 to 151 significant SNPs in the three populations. Comparison of the significant SNPs identified common and specific quantitative trait locus/loci (QTL) in the LPS and TC populations. Genetic feature analysis of these significant SNPs proved that these SNPs were associated with the tested traits and could be used to predict trait performance of both LPS and TC populations. RNA-seq analysis was performed using maize hybrid varieties and their parental lines, and differentially expressed genes (DEGs) between hybrid varieties and parental lines were identified. Comparison of the chromosome positions of DEGs with those of significant SNPs detected in the TC population identified potential candidate genes that might be related to hybrid performance. Combining RNA-seq analysis and MTA results identified candidate genes for hybrid performance, providing information that could be useful for maize hybrid breeding.


Asunto(s)
Lipopolisacáridos , Zea mays , Mapeo Cromosómico , Fenotipo , Fitomejoramiento , Zea mays/genética
17.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35269656

RESUMEN

In flowering plants, RNA editing is a post-transcriptional process that selectively deaminates cytidines (C) to uridines (U) in organellar transcripts. Pentatricopeptide repeat (PPR) proteins have been identified as site-specific recognition factors for RNA editing. Here, we report the map-based cloning and molecular characterization of the defective kernel mutant dek504 in maize. Loss of Dek504 function leads to delayed embryogenesis and endosperm development, which produce small and collapsed kernels. Dek504 encodes an E+-type PPR protein targeted to the mitochondria, which is required for RNA editing of mitochondrial NADH dehydrogenase 3 at the nad3-317 and nad3-44 sites. Biochemical analysis of mitochondrial protein complexes revealed a significant reduction in the mitochondrial NADH dehydrogenase complex I activity, indicating that the alteration of the amino acid sequence at nad3-44 and nad3-317 through RNA editing is essential for NAD3 function. Moreover, the amino acids are highly conserved in monocots and eudicots, whereas the events of C-to-U editing are not conserved in flowering plants. Thus, our results indicate that Dek504 is essential for RNA editing of nad3, which is critical for NAD3 function, mitochondrial complex I stability, and seed development in maize.


Asunto(s)
Edición de ARN , Zea mays , Complejo I de Transporte de Electrón/metabolismo , Regulación de la Expresión Génica de las Plantas , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Zea mays/metabolismo
18.
Plant Cell Physiol ; 62(2): 293-305, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33377894

RESUMEN

Splicing of plant organellar group II introns from precursor-RNA transcripts requires the assistance of nuclear-encoded splicing factors. Maturase (nMAT) is one such factor, as its three homologs (nMAT1, 2 and 4) have been identified as being required for the splicing of various mitochondrial introns in Arabidopsis. However, the function of nMAT in maize (Zea mays L.) is unknown. In this study, we identified a seed development mutant, empty pericarp 2441 (emp2441) from maize, which showed severely arrested embryogenesis and endosperm development. Positional cloning and transgenic complementation assays revealed that Emp2441 encodes a maturase-related protein, ZmnMAT3. ZmnMAT3 is highly expressed during seed development and its protein locates to the mitochondria. The loss of function of ZmnMAT3 resulted in the reduced splicing efficiency of various mitochondrial group II introns, particularly of the trans-splicing of nad1 introns 1, 3 and 4, which consequently abolished the transcript of nad1 and severely impaired the assembly and activity of mitochondrial complex I. Moreover, the Zmnmat3 mutant showed defective mitochondrial structure and exhibited expression and activity of alternative oxidases. These results indicate that ZmnMAT3 is essential for mitochondrial complex I assembly during kernel development in maize.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Plantas/fisiología , Semillas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Intrones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Factores de Empalme de ARN/fisiología , Semillas/metabolismo , Zea mays/genética , Zea mays/metabolismo
19.
New Phytol ; 230(6): 2337-2354, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33749863

RESUMEN

RUBylation plays essential roles in plant growth and development through regulating Cullin-RING ubiquitin E3 ligase (CRL) activities and the CRL-mediated protein degradations. However, the function of RUBylation in regulating kernel development remains unclear. Through genetic and molecular analyses of a small kernel 501 (smk501) mutant in maize (Zea mays), we cloned the smk501 gene, revealed its molecular function, and defined its roles in RUBylation pathway and seed development. Smk501 encodes a RUBylation activating enzyme E1 subunit ZmECR1 (E1 C-TERMINAL RELATED 1) protein. Destruction in RUBylation by smk501 mutation resulted in less embryo and endosperm cell number and smaller kernel size. The transcriptome and proteome profiling, hormone evaluation and cell proliferation observation revealed that disturbing ZmECR1 expression mainly affects pathways on hormone signal transduction, cell cycle progression and starch accumulation during kernel development. In addition, mutant in zmaxr1 (Auxin resistant 1), another RUB E1 subunit, also showed similar defects in kernel development. Double mutation of zmecr1 and zmaxr1 lead to empty pericarp kernel phenotype. RUBylation is a novel regulatory pathway affecting maize kernel development, majorly through its functions in modifying multiple cellular progresses.


Asunto(s)
Endospermo , Zea mays , Perfilación de la Expresión Génica , Ácidos Indolacéticos , Proteínas de Plantas/genética , Semillas , Zea mays/genética
20.
J Exp Bot ; 72(20): 6933-6948, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34279607

RESUMEN

Intron splicing is an essential event in post-transcriptional RNA processing in plant mitochondria, which requires the participation of diverse nuclear-encoded splicing factors. However, it is presently unclear how these proteins cooperatively take part in the splicing of specific introns. In this study, we characterized a nuclear-encoded mitochondrial P-type pentatricopeptide repeat (PPR) protein named EMP603. This protein is essential for splicing of intron 2 in the Nad1 gene and interacts with the mitochondria-localized DEAD-box RNA helicase PMH2-5140, the RAD52-like proteins ODB1-0814 and ODB1-5061, and the CRM domain-containing protein Zm-mCSF1. Further study revealed that the N-terminal region of EMP603 interacts with the DEAD-box of PMH2-5140, the CRM domain of Zm-mCSF1, and OBD1-5061, but not with OBD1-0814, whereas the PPR domain of EMP603 can interact with ODB1-0814, ODB1-5061, and PMH2-5140, but not with Zm-mCSF1. Defects in EMP603 severely disrupt the assembly and activity of mitochondrial complex I, leading to impaired mitochondrial function, and delayed seed development. The interactions revealed between EMP603 and PMH2-5140, ODB1-0814, ODB1-5061, and Zm-mCSF1 indicate a possible involvement of a dynamic 'spliceosome-like' complex in intron splicing, and may accelerate the elucidation of the intron splicing mechanism in plant mitochondria.


Asunto(s)
Proteínas Mitocondriales , Zea mays , Regulación de la Expresión Génica de las Plantas , Intrones/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Empalme del ARN , Semillas/genética , Semillas/metabolismo , Zea mays/genética , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA