Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Nature ; 556(7699): 103-107, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29590091

RESUMEN

A challenge in the treatment of Staphylococcus aureus infections is the high prevalence of methicillin-resistant S. aureus (MRSA) strains and the formation of non-growing, dormant 'persister' subpopulations that exhibit high levels of tolerance to antibiotics and have a role in chronic or recurrent infections. As conventional antibiotics are not effective in the treatment of infections caused by such bacteria, novel antibacterial therapeutics are urgently required. Here we used a Caenorhabditis elegans-MRSA infection screen to identify two synthetic retinoids, CD437 and CD1530, which kill both growing and persister MRSA cells by disrupting lipid bilayers. CD437 and CD1530 exhibit high killing rates, synergism with gentamicin, and a low probability of resistance selection. All-atom molecular dynamics simulations demonstrated that the ability of retinoids to penetrate and embed in lipid bilayers correlates with their bactericidal ability. An analogue of CD437 was found to retain anti-persister activity and show an improved cytotoxicity profile. Both CD437 and this analogue, alone or in combination with gentamicin, exhibit considerable efficacy in a mouse model of chronic MRSA infection. With further development and optimization, synthetic retinoids have the potential to become a new class of antimicrobials for the treatment of Gram-positive bacterial infections that are currently difficult to cure.


Asunto(s)
Antibacterianos/clasificación , Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Retinoides/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Animales , Antibacterianos/efectos adversos , Antibacterianos/uso terapéutico , Benzoatos/química , Benzoatos/farmacología , Benzoatos/uso terapéutico , Benzoatos/toxicidad , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/microbiología , Muerte Celular/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Gentamicinas/farmacología , Gentamicinas/uso terapéutico , Humanos , Membrana Dobles de Lípidos/química , Staphylococcus aureus Resistente a Meticilina/citología , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Ratones , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Mutación , Naftoles/química , Naftoles/farmacología , Naftoles/uso terapéutico , Naftoles/toxicidad , Retinoides/química , Retinoides/uso terapéutico , Retinoides/toxicidad
2.
Infect Immun ; 91(1): e0037822, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36602381

RESUMEN

Recent studies have found that the coexistence of fungi and bacteria in the airway may increase the risk of infection, contribute to the development of pneumonia, and increase the severity of disease. Interleukin 17A (IL-17A) plays important roles in host resistance to bacterial and fungal infections. The objective of this study was to determine the effects of IL-17A on Acinetobacter baumannii-infected rats with a previous Candida albicans airway inoculation. The incidence of A. baumannii pneumonia was higher in rats with C. albicans in the airway than in noninoculated rats, and it decreased when amphotericin B was used to clear C. albicans, which influenced IL-17A levels. IL-17A had a protective effect in A. baumannii pneumonia associated with C. albicans in the airway. Compared with A. baumannii-infected rats with C. albicans in the airway that did not receive IL-17A, recombinant IL-17A (rIL-17A) supplementation decreased the incidence of A. baumannii pneumonia (10/15 versus 5/17; P = 0.013) and the proportion of neutrophils in the lung (84 ± 3.5 versus 74 ± 4.3%; P = 0.033), reduced tissue destruction and inflammation, and decreased levels of myeloperoxidase (MPO) (1.267 ± 0.15 versus 0.233 ± 0.06 U/g; P = 0.0004), reactive oxygen species (ROS) (132,333 ± 7,505 versus 64,667 ± 10,115 AU; P = 0.0007) and lactate dehydrogenase (LDH) (2.736 ± 0.05 versus 2.1816 ± 0.29 U/g; P = 0.0313). In vitro experiments revealed that IL-17A had no significant effect on the direct migration ability and bactericidal capability of neutrophils. However, IL-17A restrained lysis cell death and increased apoptosis of neutrophils (2.9 ± 1.14 versus 7 ± 0.5%; P = 0.0048). Taken together, our results suggest that C. albicans can depress IL-17A levels, which when supplemented may have a regulatory function that limits the accumulation of neutrophils in inflammatory areas, providing inflammatory response homeostasis.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Neumonía Bacteriana , Neumonía , Ratas , Animales , Candida albicans/metabolismo , Interleucina-17/metabolismo , Acinetobacter baumannii/metabolismo , Pulmón/metabolismo , Neutrófilos/metabolismo , Bacterias/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(33): 16529-16534, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31358625

RESUMEN

Treatment of Staphylococcus aureus infections is complicated by the development of antibiotic tolerance, a consequence of the ability of S. aureus to enter into a nongrowing, dormant state in which the organisms are referred to as persisters. We report that the clinically approved anthelmintic agent bithionol kills methicillin-resistant S. aureus (MRSA) persister cells, which correlates with its ability to disrupt the integrity of Gram-positive bacterial membranes. Critically, bithionol exhibits significant selectivity for bacterial compared with mammalian cell membranes. All-atom molecular dynamics (MD) simulations demonstrate that the selectivity of bithionol for bacterial membranes correlates with its ability to penetrate and embed in bacterial-mimic lipid bilayers, but not in cholesterol-rich mammalian-mimic lipid bilayers. In addition to causing rapid membrane permeabilization, the insertion of bithionol increases membrane fluidity. By using bithionol and nTZDpa (another membrane-active antimicrobial agent), as well as analogs of these compounds, we show that the activity of membrane-active compounds against MRSA persisters positively correlates with their ability to increase membrane fluidity, thereby establishing an accurate biophysical indicator for estimating antipersister potency. Finally, we demonstrate that, in combination with gentamicin, bithionol effectively reduces bacterial burdens in a mouse model of chronic deep-seated MRSA infection. This work highlights the potential repurposing of bithionol as an antipersister therapeutic agent.


Asunto(s)
Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Reposicionamiento de Medicamentos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Animales , Bitionol/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Colesterol/química , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Gentamicinas/farmacología , Membrana Dobles de Lípidos/química , Fluidez de la Membrana/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/ultraestructura , Simulación de Dinámica Molecular , Fosfatidilcolinas/química , Relación Estructura-Actividad , Liposomas Unilamelares
4.
Cell Microbiol ; 22(10): e13234, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32543022

RESUMEN

Cutibacterium acnes is capable of inducing inflammation in acne and can lead to a chronic prostatic infection. The diverse pathogenicity among different strains of C. acnes has been presented, but simple appropriate animal models for the evaluation of this bacterium are lacking. In this study, the nematode Caenorhabditis elegans was used as an invertebrate infection model. We revealed that C. acnes type strain ATCC 6919 caused lethal infections to C. elegans in solid and liquid culture media (p < .0001). Compared with the strain ATCC 6919, the antibiotic-resistant strain HM-513 was more virulent, resulting in reduced survival (p < .0001). Four different C. acnes strains killed worms with a p value of less than .0001 when provided to C. elegans at 4.8 × 108 CFU/ml. The infection model was also employed to explore host defence responses. An increase in numerous immune effectors in response to C. acnes was detected. We focused on nine C-type lectins, including: clec-13, clec-17, clec-47, clec-52, clec-60, clec-61, clec-70, clec-71 and clec-227. The induced expression of these C-type lectin genes was down-regulated in mutant worms deficient in the p38 mitogen-activated protein kinase (MAPK) pathway. Meanwhile, PMK-1 (MAPK) was phosphorylated and activated at the onset of C. acnes infection. By monitoring the survival of mutant worms, we found that PMK-1, SEK-1 (MAPKK) and TIR-1 (MAPKKK) were critical in responding to C. acnes infection. C. elegans pmk-1 and tir-1 mutants exhibited higher mortality to C. acnes infection (p < .0001). In conclusion, C. elegans serves as a simple and valuable model to study C. acnes virulence and facilitates improvements in understanding of host innate immune responses.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiología , Lectinas Tipo C/metabolismo , Sistema de Señalización de MAP Quinasas , Propionibacteriaceae/patogenicidad , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Caenorhabditis elegans/inmunología , Proteínas de Caenorhabditis elegans/genética , Regulación hacia Abajo , Inmunidad Innata , Lectinas Tipo C/genética , MAP Quinasa Quinasa 4/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Receptores Acoplados a Proteínas G/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-32253208

RESUMEN

Probiotics might provide an alternative approach for the control of oral candidiasis. However, studies on the antifungal activity of probiotics in the oral cavity are based on the consumption of yogurt or other dietary products, and it is necessary to use appropriate biomaterials and specific strains to obtain probiotic formulations targeted for local oral administration. In this study, we impregnated gellan gum, a natural biopolymer used as a food additive, with a probiotic and investigated its antifungal activity against Candida albicansLactobacillus paracasei 28.4, a strain recently isolated from the oral cavity of a caries-free individual, was incorporated in several concentrations of gellan gum (0.6% to 1% [wt/vol]). All tested concentrations could incorporate L. paracasei cells while maintaining bacterial viability. Probiotic-gellan gum formulations were stable for 7 days when stored at room temperature or 4°C. Long-term storage of bacterium-impregnated gellan gum was achieved when L. paracasei 28.4 was lyophilized. The probiotic-gellan gum formulations provided a release of L. paracasei cells over 24 h that was sufficient to inhibit the growth of C. albicans, with effects dependent on the cell concentrations incorporated into gellan gum. The probiotic-gellan gum formulations also had inhibitory activity against Candida sp. biofilms by reducing the number of Candida sp. cells (P < 0.0001), decreasing the total biomass (P = 0.0003), and impairing hyphae formation (P = 0.0002), compared to the control group which received no treatment. Interestingly, a probiotic formulation of 1% (wt/vol) gellan gum provided an oral colonization of L. paracasei in mice with approximately 6 log CFU/ml after 10 days. This formulation inhibited C. albicans growth (P < 0.0001), prevented the development of candidiasis lesions (P = 0.0013), and suppressed inflammation (P = 0.0006) compared to the mice not treated in the microscopic analysis of the tongue dorsum. These results indicate that gellan gum is a promising biomaterial and can be used as a carrier system to promote oral colonization for probiotics that prevent oral candidiasis.


Asunto(s)
Candidiasis Bucal , Lacticaseibacillus paracasei , Probióticos , Animales , Ratones , Polisacáridos Bacterianos
6.
Microb Pathog ; 117: 80-87, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29432910

RESUMEN

The objective of this study was to evaluate the influence of microbe-microbe interactions to identify a strain of Lactobacillus that could reduce the filamentation of Candida albicans ATCC 18804 using in vitro and in vivo models. Thus presenting a probiotic effect against the fungal pathogen. First, we analyzed the ability of 25 clinical isolates of Lactobacillus to reduce filamentation in C. albicans in vitro. We found that L. paracasei isolate 28.4 exhibited the greatest reduction of C. albicans hyphae (p = 0.0109). This reduction was confirmed by scanning electron microscopy analysis. The influence of C. albicans filamentation was found to be contributed through reduced gene expression of filament associated genes (TEC1 and UME6). In an in vivo study, prophylactic provisions with L. paracasei increased the survival of Caenorhabditis elegans worms infected with C. albicans (p = 0.0001) by 29%. Prolonged survival was accompanied by the prevention of cuticle rupture of 27% of the worms by filamentation of C. albicans, a phenotype that is characteristic of C. albicans killing of nematodes, compared to the control group. Lactobacillus paracasei isolate 28.4 reduced the filamentation of C. albicans in vitro by negatively regulating the TEC1 and UME6 genes that are essential for the production of hyphae. Prophylactic provision of Lactobacillus paracasei 28.4 protected C. elegans against candidiasis in vivo. L. paracasei 28.4 has the potential to be employed as an alternative method to control candidiasis.


Asunto(s)
Caenorhabditis elegans/microbiología , Candida albicans/crecimiento & desarrollo , Hifa/crecimiento & desarrollo , Lacticaseibacillus paracasei/fisiología , Modelos Teóricos , Animales , Antibiosis , Candida albicans/genética , Candidiasis/microbiología , Candidiasis/prevención & control , Candidiasis/terapia , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos/genética , Hifa/citología , Lacticaseibacillus paracasei/aislamiento & purificación , Interacciones Microbianas , Probióticos , Proteínas Represoras/genética , Factores de Transcripción/genética
7.
Biofouling ; 34(2): 212-225, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29380647

RESUMEN

This study isolated Lactobacillus strains from caries-free subjects and evaluated the inhibitory effects directly on three strains of C. albicans, two clinical strains and one reference strain. Thirty Lactobacillus strains were isolated and evaluated for antimicrobial activity against in vitro C. albicans biofilms. L. paracasei 28.4, L. rhamnosus 5.2 and L. fermentum 20.4 isolates exhibited the most significant inhibitory activity against C. albicans. Co-incubation between these microorganisms resulted in deterrence of biofilm development and retardation of hyphal formation. The hindrance of biofilm development was characterized by the downregulated expression of C. albicans biofilm-specific genes (ALS3, HWP1, EFG1 and CPH1). L. paracasei 28.4, L. rhamnosus 5.2 and L. fermentum 20.4 demonstrated the ability to exert antifungal activity through the inhibition of C. albicans biofilms.


Asunto(s)
Antibiosis , Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Candidiasis Bucal/prevención & control , Lactobacillus/fisiología , Probióticos/farmacología , Biopelículas/crecimiento & desarrollo , Candida albicans/genética , Candida albicans/fisiología , Humanos , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo
8.
Artículo en Inglés | MEDLINE | ID: mdl-28483966

RESUMEN

The increasing prevalence of antibiotic resistance has created an urgent need for alternative drugs with new mechanisms of action. Antimicrobial peptides (AMPs) are promising candidates that could address the spread of multidrug-resistant bacteria, either alone or in combination with conventional antibiotics. We studied the antimicrobial efficacy and bactericidal mechanism of cecropin A2, a 36-residue α-helical cationic peptide derived from Aedes aegypti cecropin A, focusing on the common pathogen Pseudomonas aeruginosa The peptide showed little hemolytic activity and toxicity toward mammalian cells, and the MICs against most clinical P. aeruginosa isolates were 32 to 64 µg/ml, and its MICs versus other Gram-negative bacteria were 2 to 32 µg/ml. Importantly, cecropin A2 demonstrated synergistic activity against P. aeruginosa when combined with tetracycline, reducing the MICs of both agents by 8-fold. The combination was also effective in vivo in the P. aeruginosa/Galleria mellonella model (P < 0.001). We found that cecropin A2 bound to P. aeruginosa lipopolysaccharides, permeabilized the membrane, and interacted with the bacterial genomic DNA, thus facilitating the translocation of tetracycline into the cytoplasm. In summary, the combination of cecropin A2 and tetracycline demonstrated synergistic antibacterial activity against P. aeruginosain vitro and in vivo, offering an alternative approach for the treatment of P. aeruginosa infections.


Asunto(s)
Antibacterianos/farmacología , Cecropinas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Tetraciclina/farmacología , Aedes , Animales , Sinergismo Farmacológico , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Bacterias Gramnegativas/efectos de los fármacos , Células Hep G2 , Humanos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-28533240

RESUMEN

Human cryptococcosis can occur as a primary or opportunistic infection and develops as an acute, subacute, or chronic systemic infection involving different organs of the host. Given the limited therapeutic options and the occasional resistance to fluconazole, there is a need to develop novel drugs for the treatment of cryptococcosis. In this report, we describe promising thiazole compounds 1, 2, 3, and 4 and explore their possible modes of action against Cryptococcus To this end, we show evidence of interference in the Cryptococcus antioxidant system. The tested compounds exhibited MICs ranging from 0.25 to 2 µg/ml against Cryptococcus neoformans strains H99 and KN99α. Interestingly, the knockout strains for Cu oxidase and sarcosine oxidase were resistant to thiazoles. MIC values of thiazole compounds 1, 2, and 4 against these mutants were higher than for the parental strain. After the treatment of C. neoformans ATCC 24067 (or C. deneoformans) and C. gattii strain L27/01 (or C. deuterogattii) with thiazoles, we verified an increase in intracellular reactive oxygen species (ROS). Also, we verified the synergistic interactions among thiazoles and menadione, which generates superoxides, with fractional inhibitory concentrations (FICs) equal to 0.1874, 0.3024, 0.25, and 0.25 for the thiazole compounds 1, 2, 3, and 4, respectively. In addition, thiazoles exhibited antagonistic interactions with parasulphonatephenyl porphyrinato ferrate III (FeTPPS). Thus, in this work, we showed that the action of these thiazoles is related to an interference with the antioxidant system. These findings suggest that oxidative stress may be primarily related to the accumulation of superoxide radicals.


Asunto(s)
Antifúngicos/farmacología , Criptococosis/tratamiento farmacológico , Cryptococcus gattii/efectos de los fármacos , Cryptococcus neoformans/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Tiazoles/farmacología , Farmacorresistencia Fúngica , Humanos , Pruebas de Sensibilidad Microbiana , Oxidorreductasas/genética , Sarcosina-Oxidasa/genética , Vitamina K 3/metabolismo
10.
Mycopathologia ; 181(1-2): 17-25, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26384671

RESUMEN

The echinocandin family of drugs is well characterized for antifungal function that inhibits ß-D-glucan synthesis. The aim of this work was to study whether micafungin, a member of the echinocandin family, elicits additional activities that prime the host's immune response. We found that in a Galleria mellonella model, prophylactic treatment with micafungin extended the life of Staphylococcus aureus-infected larvae (a pathogen to which the drug demonstrates no direct antimicrobial activity) compared to insects that did not receive micafungin (P < 0.05). The inhibition of pathogens in the G. mellonella infection model was characterized by a 2.43-fold increase in hemocyte density, compared to larvae inoculated with PBS. In a murine model where animals were provided micafungin prophylaxis 3 days prior to macrophage collection, macrophages were found associated with an average 0.9 more fungal cells per macrophage as compared to saline-treated animals. Interestingly, micafungin-stimulated macrophages killed 11.6 ± 6.2 % of fungal cells compared to 3.8 ± 2.4 % of macrophages from saline-treated animals. The prophylactic provision of micafungin prior to Candida albicans infection was characterized by an increase in the proinflammatory cytokines CXCL13 and SPP1 by 11- and 6.9-fold, respectively. In conclusion, micafungin demonstrated the ability to stimulate phagocytic cells and promote an immune response that can inhibit microbial infections.


Asunto(s)
Equinocandinas/administración & dosificación , Equinocandinas/farmacología , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/farmacología , Lipopéptidos/administración & dosificación , Lipopéptidos/farmacología , Animales , Candida albicans/inmunología , Candida albicans/fisiología , Modelos Animales de Enfermedad , Lepidópteros , Macrófagos/inmunología , Macrófagos/microbiología , Micafungina , Ratones , Viabilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Análisis de Supervivencia , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA