Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Exp Eye Res ; 201: 108258, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32980316

RESUMEN

The transforming growth factor-beta (TGFB) plays an essential role in the pathogenesis of some ophthalmologic diseases, including neovascular age-related macular degeneration (nAMD) and proliferative vitreoretinopathy (PVR). TGFB activates the transcription factors SMAD2 and SMAD3 via the TGFB receptor, which together activate several genes, including VEGFA. TGFB treated ARPE-19 cells show an increased proliferation rate and undergo epithelial to mesenchymal transition (EMT). Since microRNAs (miRNAs) are capable of inhibiting the translation of multiple genes, we screened for miRNAs that regulate the TGFB signalling pathways at multiple levels. In this study, we focused on two miRNAs, miR-302d and miR-93, which inhibit TGFB signalling pathway and therefore TGFB-induced EMT transition as well as VEGFA secretion from ARPE-19 cells. Furthermore, we could show that both miRNAs can retransform TGFB-stimulated mesenchymal ARPE-19 cells towards the morphological epithelial-like state. Taken together, transient overexpression of these miRNAs in RPE cells might be a promising approach for further translational strategies.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Regulación de la Expresión Génica , MicroARNs/genética , Epitelio Pigmentado de la Retina/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Degeneración Macular Húmeda/genética , Western Blotting , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Humanos , MicroARNs/biosíntesis , ARN/genética , Epitelio Pigmentado de la Retina/patología , Factor de Crecimiento Transformador beta/biosíntesis , Degeneración Macular Húmeda/metabolismo , Degeneración Macular Húmeda/patología
2.
Redox Biol ; 22: 101147, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30825774

RESUMEN

Macrophages adopt different phenotypes in response to microenvironmental changes, which can be principally classified into inflammatory and anti-inflammatory states. Inflammatory activation of macrophages has been linked with metabolic reprogramming from oxidative phosphorylation to aerobic glycolysis. In contrast to mouse macrophages, little information is available on the link between metabolism and inflammation in human macrophages. In the current report it is demonstrated that lipopolysaccharide (LPS)-activated human peripheral blood monocyte-derived macrophages (hMDMs) fail to undergo metabolic reprogramming towards glycolysis, but rely on oxidative phosphorylation for the generation of ATP. By contrast, activation by LPS led to an increased extracellular acidification rate (glycolysis) and decreased oxygen consumption rate (oxidative phosphorylation) in mouse bone marrow-derived macrophages (mBMDMs). Mitochondrial bioenergetics after LPS stimulation in human macrophages was unchanged, but was markedly impaired in mouse macrophages. Furthermore, treatment with 2-deoxyglucose, an inhibitor of glycolysis, led to cell death in mouse, but not in human macrophages. Finally, glycolysis appeared to be critical for LPS-mediated induction of the anti-inflammatory cytokine interleukin-10 in both human and mouse macrophages. In summary, these findings indicate that LPS-induced immunometabolism in human macrophages is different to that observed in mouse macrophages.


Asunto(s)
Metabolismo Energético , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Células Cultivadas , Citocinas/metabolismo , Glucólisis , Humanos , Activación de Macrófagos/inmunología , Potencial de la Membrana Mitocondrial , Ratones , Fosforilación Oxidativa
3.
Elife ; 42015 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-25556700

RESUMEN

miR-128, a brain-enriched microRNA, has been implicated in the control of neurogenesis and synaptogenesis but its potential roles in intervening processes have not been addressed. We show that post-transcriptional mechanisms restrict miR-128 accumulation to post-mitotic neurons during mouse corticogenesis and in adult stem cell niches. Whereas premature miR-128 expression in progenitors for upper layer neurons leads to impaired neuronal migration and inappropriate branching, sponge-mediated inhibition results in overmigration. Within the upper layers, premature miR-128 expression reduces the complexity of dendritic arborization, associated with altered electrophysiological properties. We show that Phf6, a gene mutated in the cognitive disorder Börjeson-Forssman-Lehmann syndrome, is an important regulatory target for miR-128. Restoring PHF6 expression counteracts the deleterious effect of miR-128 on neuronal migration, outgrowth and intrinsic physiological properties. Our results place miR-128 upstream of PHF6 in a pathway vital for cortical lamination as well as for the development of neuronal morphology and intrinsic excitability.


Asunto(s)
Movimiento Celular , Proteínas de Homeodominio/genética , Discapacidad Intelectual/genética , MicroARNs/metabolismo , Neuronas/metabolismo , Neuronas/patología , Envejecimiento/metabolismo , Animales , Forma de la Célula , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Dendritas/metabolismo , Epilepsia/genética , Cara/anomalías , Dedos/anomalías , Regulación del Desarrollo de la Expresión Génica , Trastornos del Crecimiento/genética , Proteínas de Homeodominio/metabolismo , Hipogonadismo/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Ratones , MicroARNs/genética , Obesidad/genética , Precursores del ARN/metabolismo , Proteínas Represoras , Nicho de Células Madre , Factores de Tiempo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA