Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Int J Biometeorol ; 68(3): 435-444, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38147121

RESUMEN

The skin plays an important role in thermoregulation. Identification of genes on the skin that contribute to increased heat tolerance can be used to select animals with the best performance in warm environments. Our objective was to identify candidate genes associated with the heat stress response in the skin of Santa Ines sheep. A group of 80 sheep assessed for thermotolerance was kept in a climatic chamber for 8 days at a stress level temperature of 36 °C (10 am to 04 pm) and a maintenance temperature of 28 °C (04 pm to 10 am). Two divergent groups, with seven animals each, were formed after ranking them by thermotolerance using rectal temperature. From skin biopsy samples, total RNA was extracted, quantified, and used for RNA-seq analysis. 15,989 genes were expressed in sheep skin samples, of which 4 genes were differentially expressed (DE; FDR < 0.05) and 11 DE (FDR 0.05-0.177) between the two divergent groups. These genes are involved in cellular protection against stress (HSPA1A and HSPA6), ribosome assembly (28S, 18S, and 5S ribosomal RNA), and immune response (IGHG4, GNLY, CXCL1, CAPN14, and SAA-4). The candidate genes and main pathways related to heat tolerance in Santa Ines sheep require further investigation to understand their response to heat stress in different climatic conditions and under solar radiation. It is essential to verify whether these genes and pathways are present in different breeds and to understand the relationship between heat stress and other genes identified in this study.


Asunto(s)
Termotolerancia , Ovinos/genética , Animales , Termotolerancia/genética , Piel , Regulación de la Temperatura Corporal/genética , Respuesta al Choque Térmico/genética , Perfilación de la Expresión Génica
2.
BMC Genomics ; 24(1): 91, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36855067

RESUMEN

BACKGROUND: The high similarity in anatomical and neurophysiological processes between pigs and humans make pigs an excellent model for metabolic diseases and neurological disorders. Lipids are essential for brain structure and function, and the polyunsaturated fatty acids (PUFA) have anti-inflammatory and positive effects against cognitive dysfunction in neurodegenerative diseases. Nutrigenomics studies involving pigs and fatty acids (FA) may help us in better understanding important biological processes. In this study, the main goal was to evaluate the effect of different levels of dietary soybean oil on the lipid profile and transcriptome in pigs' brain tissue. RESULTS: Thirty-six male Large White pigs were used in a 98-day study using two experimental diets corn-soybean meal diet containing 1.5% soybean oil (SOY1.5) and corn-soybean meal diet containing 3.0% soybean oil (SOY3.0). No differences were found for the brain total lipid content and FA profile between the different levels of soybean oil. For differential expression analysis, using the DESeq2 statistical package, a total of 34 differentially expressed genes (DEG, FDR-corrected p-value < 0.05) were identified. Of these 34 DEG, 25 are known-genes, of which 11 were up-regulated (log2 fold change ranging from + 0.25 to + 2.93) and 14 were down-regulated (log2 fold change ranging from - 3.43 to -0.36) for the SOY1.5 group compared to SOY3.0. For the functional enrichment analysis performed using MetaCore with the 34 DEG, four pathway maps were identified (p-value < 0.05), related to the ALOX15B (log2 fold change - 1.489), CALB1 (log2 fold change - 3.431) and CAST (log2 fold change + 0.421) genes. A "calcium transport" network (p-value = 2.303e-2), related to the CAST and CALB1 genes, was also identified. CONCLUSION: The results found in this study contribute to understanding the pathways and networks associated with processes involved in intracellular calcium, lipid metabolism, and oxidative processes in the brain tissue. Moreover, these results may help a better comprehension of the modulating effects of soybean oil and its FA composition on processes and diseases affecting the brain tissue.


Asunto(s)
Aceite de Soja , Transcriptoma , Animales , Masculino , Encéfalo , Calcio , Dieta/veterinaria , Ácidos Grasos , Aceite de Soja/farmacología , Porcinos
3.
Funct Integr Genomics ; 23(1): 73, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36867299

RESUMEN

Pork is of great importance in world trade and represents the largest source of fatty acids in the human diet. Lipid sources such as soybean oil (SOY), canola (CO), and fish oil (FO) are used in pig diets and influence blood parameters and the ratio of deposited fatty acids. In this study, the main objective was to evaluate changes in gene expression in porcine skeletal muscle tissue resulting from the dietary oil sources and to identify metabolic pathways and biological process networks through RNA-Seq. The addition of FO in the diet of pigs led to intramuscular lipid with a higher FA profile composition of C20:5 n-3, C22:6 n-3, and SFA (C16:0 and C18:0). Blood parameters for the FO group showed lower cholesterol and HDL content compared with CO and SOY groups. Skeletal muscle transcriptome analyses revealed 65 differentially expressed genes (DEG, FDR 10%) between CO vs SOY, and 32 DEG for CO vs FO, and 531 DEG for SOY vs FO comparison. Several genes, including AZGP1, PDE3B, APOE, PLIN1, and LIPS, were found to be down-regulated in the diet of the SOY group compared to the FO group. The enrichment analysis revealed DEG involved in lipid metabolism, metabolic diseases, and inflammation between the oil groups, with specific gene functions in each group and altered blood parameters. The results provide mechanisms to help us understand the behavior of genes according to fatty acids.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Animales , Masculino , Porcinos , Ácidos Grasos , Inflamación , Músculo Esquelético , Aceite de Soja
4.
BMC Genomics ; 23(1): 774, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36434498

RESUMEN

BACKGROUND: Potential functional variants (PFVs) can be defined as genetic variants responsible for a given phenotype. Ultimately, these are the best DNA markers for animal breeding and selection, especially for polygenic and complex phenotypes. Herein, we described the identification of PFVs for complex phenotypes (in this case, Feed Efficiency in beef cattle) using a systems-biology driven approach based on RNA-seq data from physiologically relevant organs. RESULTS: The systems-biology coupled with deep molecular phenotyping by RNA-seq of liver, muscle, hypothalamus, pituitary, and adrenal glands of animals with high and low feed efficiency (FE) measured by residual feed intake (RFI) identified 2,000,936 uniquely variants. Among them, 9986 variants were significantly associated with FE and only 78 had a high impact on protein expression and were considered as PFVs. A set of 169 significant uniquely variants were expressed in all five organs, however, only 27 variants had a moderate impact and none of them a had high impact on protein expression. These results provide evidence of tissue-specific effects of high-impact PFVs. The PFVs were enriched (FDR < 0.05) for processing and presentation of MHC Class I and II mediated antigens, which are an important part of the adaptive immune response. The experimental validation of these PFVs was demonstrated by the increased prediction accuracy for RFI using the weighted G matrix (ssGBLUP+wG; Acc = 0.10 and b = 0.48) obtained in the ssGWAS in comparison to the unweighted G matrix (ssGBLUP; Acc = 0.29 and b = 1.10). CONCLUSION: Here we identified PFVs for FE in beef cattle using a strategy based on systems-biology and deep molecular phenotyping. This approach has great potential to be used in genetic prediction programs, especially for polygenic phenotypes.


Asunto(s)
Alimentación Animal , Ingestión de Alimentos , Animales , Bovinos/genética , Ingestión de Alimentos/genética , Biología de Sistemas , Marcadores Genéticos , Fenotipo
5.
Mamm Genome ; 33(4): 629-641, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35840822

RESUMEN

Animal feeding is a critical factor in increasing producer profitability. Improving feed efficiency can help reduce feeding costs and reduce the environmental impact of beef production. Candidate genes previously identified for this trait in differential gene expression studies (e.g., case-control studies) have not examined continuous gene-phenotype variation, which is a limitation. The aim of this study was to investigate the association between the expression of five candidate genes in the liver, measured by quantitative real-time PCR and feed-related traits. We adopted a linear mixed model to associate liver gene expression from 52 Nelore steers with the following production traits: average daily gain (ADG), body weight (BW), dry matter intake (DMI), feed conversion ratio (FCR), feed efficiency (FE), Kleiber index (KI), metabolic body weight (MBW), residual feed intake (RFI), and relative growth ratio (RGR). The total expression of the prune homolog 2 (PRUNE2) gene was significantly associated with DMI, FCR, FE, and RFI (P < 0.05). Furthermore, we have identified a new transcript of PRUNE2 (TCONS_00027692, GenBank MZ041267) that was inversely correlated with FCR and FE (P < 0.05), in contrast to the originally identified PRUNE2 transcript. The cytochrome P450 subfamily 2B (CYP2B6), early growth response protein 1 (EGR1), collagen type I alpha 1 chain (COL1A1), and connective tissue growth factor (CTGF) genes were not associated with any feed efficiency-related traits (P > 0.05). The findings reported herein suggest that PRUNE2 expression levels affects feed efficiency-related traits variation in Nelore steers.


Asunto(s)
Alimentación Animal , Ingestión de Alimentos , Bovinos/genética , Animales , Ingestión de Alimentos/genética , Fenotipo , Alimentación Animal/análisis , Peso Corporal/genética , Expresión Génica
6.
Biol Reprod ; 106(1): 213-226, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34725678

RESUMEN

Holding at room temperature is the first step in most boar semen cryopreservation protocols. It is well accepted that a holding time (HT) of 24 h increases sperm cryotolerance. However, the effect of HT on ejaculates with different freezability is not entirely clear. The aim of this study was to understand how HT influences spermatic and seminal plasma metabolite profiles of boar ejaculates and how these possible changes affect freezability. A total of 27 ejaculates were collected and extended to 1:1 (v: v) with BTS and split into two aliquots. The first aliquot was cryopreserved without HT (0 h), and the second was held at 17°C for 24 h before cryopreservation. Spermatozoa and seminal plasma were collected by centrifugation at two times, before HT (0 h) and after HT (24 h), and subsequently frozen until metabolite extraction and UPLC-MS analysis. After thawing, the semen samples were evaluated for kinetics, membrane integrity, mitochondrial potential, membrane lipid peroxidation, and fluidity. The ejaculates were then allocated into two phenotypes (good ejaculate freezers [GEF] and poor ejaculate freezers [PEF]) based on the percent reduction in sperm quality (%RSQ) as determined by the difference in total motility and membrane integrity between raw and post-thaw samples cryopreserved after 24 h of HT. The metabolic profile of the seminal plasma did not seem to influence ejaculate freezability, but that of the spermatozoa were markedly different between GEF and PEF. We identified a number of metabolic markers in the sperm cells (including inosine, hypoxanthine, creatine, ADP, niacinamide, spermine, and 2-methylbutyrylcarnitine) that were directly related to the improvement of ejaculate freezability during HT; these were components of metabolic pathways associated with energy production. Furthermore, PEF showed an upregulation in the arginine and proline as well as the glutathione metabolism pathways. These findings help to better understand the effect of HT on boar sperm freezability and propose prospective metabolic markers that may predict freezability; this has implications in both basic and applied sciences.


Asunto(s)
Criopreservación/veterinaria , Metaboloma/fisiología , Preservación de Semen/veterinaria , Espermatozoides/metabolismo , Sus scrofa , Factores de Tiempo , Animales , Criopreservación/métodos , Masculino , Fenotipo , Semen/química , Semen/metabolismo , Análisis de Semen/veterinaria , Preservación de Semen/métodos , Temperatura
7.
J Med Virol ; 94(7): 3394-3398, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35229308

RESUMEN

Delta VOC is highly diverse with more than 120 sublineages already described as of November 30, 2021. In this study, through active monitoring of circulating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants in the state of São Paulo, southeast Brazil, we identified two emerging sublineages from the ancestral AY.43 strain which were classified as AY.43.1 and AY.43.2. These sublineages were defined by the following characteristic nonsynonymous mutations ORF1ab:A4133V and ORF3a:T14I for the AY.43.1 and ORF1ab:G1155C for the AY.43.2 and our analysis reveals that they might have a likely-Brazilian origin. Much is still unknown regarding their dissemination in the state of São Paulo and Brazil as well as their potential impact on the ongoing vaccination process. However, the results obtained in this study reinforce the importance of genomic surveillance activity for timely identification of emerging SARS-CoV-2 variants which can impact the ongoing SARS-CoV-2 vaccination and public health policies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brasil/epidemiología , COVID-19/epidemiología , Vacunas contra la COVID-19 , Genómica , Humanos , SARS-CoV-2/genética
8.
J Med Virol ; 94(3): 1206-1211, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34647634

RESUMEN

The Lambda variants of interest (VOI) (C37/GR/452Q.V1/21G) was initially reported in Lima, Peru but has gained rapid dissemination through other Latin American countries. Nevertheless, the dissemination and molecular epidemiology of the Lambda VOI in Brazil is unknown apart from a single case report. In this respect, we characterized the circulation of the SARS-CoV-2 Lambda VOI (C37/GR/452Q.V1/21G) in Sao Paulo State, Brazil. From March to June 2021, we identified seven Lambda isolates in a set of approximately 8000 newly sequenced genomes of the Network for Pandemic Alert of Emerging SARS-CoV-2 variants from Sao Paulo State. Interestingly, in three of the positive patients, the Lambda VOI infection was probably related to a contact transmission. These individuals were fully vaccinated to COVID-19 and presented mild symptoms. The remaining positive for Lambda VOI individuals showed different levels of COVID-19 symptoms and one of them needed hospitalization (score 5, WHO). In our study, we present a low level of Lambda VOI circulation in the Sao Paulo State. This reinforces the essential role of molecular surveillance for the effective SARS-CoV-2 pandemic response, especially in regard to circulating variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brasil/epidemiología , COVID-19/epidemiología , Humanos , SARS-CoV-2/genética , Organización Mundial de la Salud
9.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36233212

RESUMEN

Despite advances in diagnostic and therapeutic approaches for lung cancer, new therapies targeting metastasis by the specific regulation of cancer genes are needed. In this study, we screened a small library of epigenetic inhibitors in non-small-cell lung cancer (NSCLC) cell lines and evaluated 38 epigenetic targets for their potential role in metastatic NSCLC. The potential candidates were ranked by a streamlined approach using in silico and in vitro experiments based on publicly available databases and evaluated by real-time qPCR target gene expression, cell viability and invasion assays, and transcriptomic analysis. The survival rate of patients with lung adenocarcinoma is inversely correlated with the gene expression of eight epigenetic targets, and a systematic review of the literature confirmed that four of them have already been identified as targets for the treatment of NSCLC. Using nontoxic doses of the remaining inhibitors, KDM6B and PADI4 were identified as potential targets affecting the invasion and migration of metastatic lung cancer cell lines. Transcriptomic analysis of KDM6B and PADI4 treated cells showed altered expression of important genes related to the metastatic process. In conclusion, we showed that KDM6B and PADI4 are promising targets for inhibiting the metastasis of lung adenocarcinoma cancer cells.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Histona Demetilasas con Dominio de Jumonji , Neoplasias Pulmonares , Arginina Deiminasa Proteína-Tipo 4 , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Detección Precoz del Cáncer , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Arginina Deiminasa Proteína-Tipo 4/genética
10.
Regul Toxicol Pharmacol ; 110: 104517, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31707131

RESUMEN

Green coffee oil enriched with cafestol and kahweol was obtained by supercritical fluid extraction using carbon dioxide while its safety and possible effects from acute and subacute treatment were evaluated in rats. For acute toxicity study, single dose of green coffee oil (2000 mg/kg) was administered by gavage in female rats. For subacute study (28 days), 32 male rats received different doses of green coffee oil extract (25, 50, and 75 mg/kg/day). In the acute toxicity study, main findings of this treatment indicated no mortality, body weight decrease, no changes in hematological and biochemical parameters, and relative weight increase in heart and thymus, without histopathological alterations in all assessed organs. All these findings suggest that LD50 is higher than aforesaid dose. In the subacute toxicity, main findings showed body weight decrease mainly at the highest dose without food consumption change, serum glucose and tryglicerides levels decrease, and relative weight increase in liver. As evidenced in histopathological pictures, no changes were observed at all treated doses. Our study suggest that green coffee oil can be explored to clinically develop new hypocholesteromic and hypoglycemic agents. However, further studies evaluating long-term effects are needed in order to have sufficient safety evidence for its use in humans.


Asunto(s)
Coffea , Diterpenos/toxicidad , Aceites de Plantas/toxicidad , Administración Oral , Animales , Femenino , Masculino , Ratas Wistar , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Subaguda
11.
BMC Genomics ; 20(1): 8, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30616514

RESUMEN

BACKGROUND: Ruminants play a great role in sustainable livestock since they transform pastures, silage, and crop residues into high-quality human food (i.e. milk and beef). Animals with better ability to convert food into animal protein, measured as a trait called feed efficiency (FE), also produce less manure and greenhouse gas per kilogram of produced meat. Thus, the identification of high feed efficiency cattle is important for sustainable nutritional management. Our aim was to evaluate the potential of serum metabolites to identify FE of beef cattle before they enter the feedlot. RESULTS: A total of 3598 and 4210 m/z features was detected in negative and positive ionization modes via liquid chromatography-mass spectrometry. A single feature was different between high and low FE groups. Network analysis (WGCNA) yielded the detection of 19 and 20 network modules of highly correlated features in negative and positive mode respectively, and 1 module of each acquisition mode was associated with RFI (r = 0.55, P < 0.05). Pathway enrichment analysis (Mummichog) yielded the Retinol metabolism pathway associated with feed efficiency in beef cattle in our conditions. CONCLUSION: Altogether, these findings demonstrate the existence of a serum-based metabolomic signature associated with feed efficiency in beef cattle before they enter the feedlot. We are now working to validate the use of metabolites for identification of feed efficient animals for sustainable nutritional management.


Asunto(s)
Alimentación Animal , Ingestión de Alimentos/genética , Metaboloma/genética , Metabolómica/métodos , Fenómenos Fisiológicos Nutricionales de los Animales/genética , Animales , Bovinos , Ingestión de Alimentos/fisiología , Calidad de los Alimentos , Fenotipo , Carne Roja
12.
Vet Dermatol ; 30(2): 162-e48, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30693578

RESUMEN

BACKGROUND: Mast cell tumours (MCTs) constitute almost 25% of cutaneous neoplasms in dogs. Their biological behaviour is predicted using histopathological grading which is based on several subjective criteria that are vulnerable to intra- and interobserver variability. To improve the prediction of the biological behaviour, several complementary markers have been studied. The integrity of the extracellular matrix (ECM) may play a protective role against tumoral progression, and favour cellular proliferation, angiogenesis, invasion and metastases when altered. HYPOTHESIS/OBJECTIVES: To evaluate the quantification of collagen and elastic fibres as prognostic markers for MCTs. ANIMALS: Thirty-eight random cases of canine cutaneous MCT surgically treated with wide margins were included. METHODS AND MATERIALS: Intratumoral collagen and elastic fibres were identified and quantified on histological sections stained with Masson's trichrome, Picrosirius red and Verhoeff; the results were compared with histopathological grades, mortality due to the disease and postsurgical survival. RESULTS: Morphometric analysis revealed a significant relationship between histopathological grade and intratumoral collagen index (CoI). In addition, the CoI was considered an independent indicator for mortality and postsurgical survival. CONCLUSIONS AND CLINICAL IMPORTANCE: These results support the importance of the CoI in the grading and prognosis of MCTs, suggesting that preservation and/or synthesis of collagen have the potential to become targets for MCT therapeutics.


Asunto(s)
Biomarcadores de Tumor/análisis , Colágeno/análisis , Elastina/análisis , Mastocitos/patología , Neoplasias Cutáneas/mortalidad , Neoplasias Cutáneas/veterinaria , Animales , Perros , Tejido Elástico , Femenino , Técnicas Histológicas , Masculino , Pronóstico , Neoplasias Cutáneas/cirugía
13.
BMC Genomics ; 17: 419, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27245577

RESUMEN

BACKGROUND: Apart from single nucleotide polymorphism (SNP), copy number variation (CNV) is another important type of genetic variation, which may affect growth traits and play key roles for the production of beef cattle. To date, no genome-wide association study (GWAS) for CNV and body traits in beef cattle has been reported, so the present study aimed to investigate this type of association in one of the most important cattle subspecies: Bos indicus (Nellore breed). RESULTS: We have used intensity data from over 700,000 SNP probes across the bovine genome to detect common CNVs in a sample of 2230 Nellore cattle, and performed GWAS between the detected CNVs and nine growth traits. After filtering for frequency and length, a total of 231 CNVs ranging from 894 bp to 4,855,088 bp were kept and tested as predictors for each growth trait using linear regression analysis with principal components correction. There were 49 significant associations identified among 17 CNVs and seven body traits after false discovery rate correction (P < 0.05). Among the 17 CNVs, three were significant or marginally significant for all the traits. We have compared the locations of associated CNVs with quantitative trait locus and the RefGene database, and found two sets of 9 CNVs overlapping with either known QTLs or genes, respectively. The gene overlapping with CNV100, KCNJ12, is a functional candidate for muscle development and plays critical roles in muscling traits. CONCLUSION: This study presents the first CNV-based GWAS of growth traits using high density SNP microarray data in cattle. We detected 17 CNVs significantly associated with seven growth traits and one of them (CNV100) may be involved in growth traits through KCNJ12.


Asunto(s)
Variaciones en el Número de Copia de ADN , Estudio de Asociación del Genoma Completo , Carácter Cuantitativo Heredable , Animales , Tamaño Corporal , Cruzamiento , Bovinos , Estudios de Asociación Genética , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
14.
BMC Genomics ; 16: 1073, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26678995

RESUMEN

BACKGROUND: The selection of beef cattle for feed efficiency (FE) traits is very important not only for productive and economic efficiency but also for reduced environmental impact of livestock. Considering that FE is multifactorial and expensive to measure, the aim of this study was to identify biological functions and regulatory genes associated with this phenotype. RESULTS: Eight genes were differentially expressed between high and low feed efficient animals (HFE and LFE, respectively). Co-expression analyses identified 34 gene modules of which 4 were strongly associated with FE traits. They were mainly enriched for inflammatory response or inflammation-related terms. We also identified 463 differentially co-expressed genes which were functionally enriched for immune response and lipid metabolism. A total of 8 key regulators of gene expression profiles affecting FE were found. The LFE animals had higher feed intake and increased subcutaneous and visceral fat deposition. In addition, LFE animals showed higher levels of serum cholesterol and liver injury biomarker GGT. Histopathology of the liver showed higher percentage of periportal inflammation with mononuclear infiltrate. CONCLUSION: Liver transcriptomic network analysis coupled with other results demonstrated that LFE animals present altered lipid metabolism and increased hepatic periportal lesions associated with an inflammatory response composed mainly by mononuclear cells. We are now focusing to identify the causes of increased liver lesions in LFE animals.


Asunto(s)
Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Estudios de Asociación Genética , Hígado/metabolismo , Carácter Cuantitativo Heredable , Transcriptoma , Animales , Bovinos , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento
15.
J Membr Biol ; 248(1): 47-52, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25298064

RESUMEN

Connexins are proteins that form gap junctions. Perturbations in the cell membrane reportedly promote changes in the expression profile of connexins. Electroporation promotes destabilization by applying electrical pulses, and this procedure is used in electrochemotherapy and gene therapy, among others. This in vitro work aimed to study the interference of electroporation on the expression profile of GJB2 (Cx26 gene) and Connexin 26 in melanoma cell line B16/BL6. The techniques of immunocytochemistry, Western blot, and real-time PCR were used. After electroporation, cells showed a transient decrease in GJB2 mRNA. The immunostaining of Cx26 showed no noticeable change after electroporation at different time points. However, Western blot showed a significant reduction in Cx26 30 min after electroporation. Our results showed that electroporation interferes transiently in the expression of Connexin 26 in melanoma and are consistent with the idea that electroporation is a process of intense stress that promotes cell homeostatic imbalance and results in disruption of cell physiological processes such as transcription and translation.


Asunto(s)
Conexinas/metabolismo , Electroporación , Melanoma Experimental/metabolismo , Animales , Línea Celular Tumoral , Conexina 26 , Humanos
16.
Mol Carcinog ; 53(5): 392-402, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-23203541

RESUMEN

Lung cancer is the leading cause of cancer-related mortality in both men and women throughout the world. This disease is strongly associated with tobacco smoking. The aim of this manuscript was to establish an in vitro model that mimics the chronic exposures of alveolar epithelial type II cells to the tobacco-specific nitrosamine carcinogen, NNK. Immortalized non-neoplastic alveolar epithelial cells type II, (E10 cells), from BALB/c mice were exposed to low concentration of NNK (100 pM) during 5, 10, 15, and 20 cycles of 48 h. NNK-transformed cells showed an increase of proliferation rate and motility. Moreover, these cells underwent epithelial-to-mesenchymal transition (EMT). Increased migratory capacity and EMT were correlated to the time of exposure to NNK. NNK-transformed cells were tested for their growth and metastatic capacity in vivo. Subcutaneous injection of cells exposed to NNK for 20 cycles (E10-NNK20 clone) into BALB/c mice led to the formation of subcutaneous tumors that arose after 40 ± 17 d in all animals, which died 95 ± 18 d after cell inoculation, with lymph nodes and lung metastasis. The morphological characteristics of tumors were compatible with metastatic undifferentiated carcinoma. Cells exposed to NNK for 5-10 cycles did not display metastatic capacity, while those exposed for 15 cycles displayed low capacity. Our results show that prolonged exposures to NNK led the cells to increasingly acquire malignant properties. The cellular model presented in this study is suitable for studying the molecular events involved in the different stages of malignant transformation.


Asunto(s)
Carcinógenos/toxicidad , Transformación Celular Neoplásica/efectos de los fármacos , Neoplasias Pulmonares/patología , Nicotiana , Nitrosaminas/toxicidad , Alveolos Pulmonares/patología , Animales , Western Blotting , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Transición Epitelial-Mesenquimal , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Técnicas para Inmunoenzimas , Técnicas In Vitro , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos BALB C , Metástasis de la Neoplasia , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/metabolismo , Cicatrización de Heridas
17.
BMC Genet ; 15: 21, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24517472

RESUMEN

BACKGROUND: Feed intake plays an important economic role in beef cattle, and is related with feed efficiency, weight gain and carcass traits. However, the phenotypes collected for dry matter intake and feed efficiency are scarce when compared with other measures such as weight gain and carcass traits. The use of genomic information can improve the power of inference of studies on these measures, identifying genomic regions that affect these phenotypes. This work performed the genome-wide association study (GWAS) for dry matter intake (DMI) and residual feed intake (RFI) of 720 Nellore cattle (Bos taurus indicus). RESULTS: In general, no genomic region extremely associated with both phenotypic traits was observed, as expected for the variables that have their regulation controlled by many genes. Three SNPs surpassed the threshold for the Bonferroni multiple test for DMI and two SNPs for RFI. These markers are located on chromosomes 4, 8, 14 and 21 in regions near genes regulating appetite and ion transport and close to important QTL as previously reported to RFI and DMI, thus corroborating the literature that points these two processes as important in the physiological regulation of intake and feed efficiency. CONCLUSIONS: This study showed the first GWAS of DMI to identify genomic regions associated with feed intake and efficiency in Nellore cattle. Some genes and QTLs previously described for DMI and RFI, in other subspecies (Bos taurus taurus), that influences these phenotypes are confirmed in this study.


Asunto(s)
Ingestión de Alimentos/genética , Alimentación Animal , Animales , Apetito/genética , Peso Corporal , Bovinos , Ingestión de Alimentos/fisiología , Estudios de Asociación Genética , Genotipo , Transporte Iónico/genética , Masculino , Carne , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Aumento de Peso
18.
Heliyon ; 10(5): e26714, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38439848

RESUMEN

Simple and complex carcinomas are the most common type of malignant Canine Mammary Tumors (CMTs), with simple carcinomas exhibiting aggressive behavior and poorer prognostic. Stemness is an ability associated with cancer initiation, malignancy, and therapeutic resistance, but is still few elucidated in canine mammary tumor subtypes. Here, we first validated, using CMT samples, a previously published canine one-class logistic regression machine learning algorithm (OCLR) to predict stemness (mRNAsi) in canine cancer cells. Then, using the canine mRNAsi, we observed that simple carcinomas exhibit higher stemness than complex carcinomas and other histological subtypes. Also, we confirmed that stemness is higher and associated with basal-like CMTs and with NMF2 metagene signature, a tumor-specific DNA-repair metagene signature. Using correlation analysis, we selected the top 50 genes correlated with higher stemness, and the top 50 genes correlated with lower stemness and further performed a gene set enrichment analysis to observe the biological processes enriched for these genes. Finally, we suggested two promise stemness-associated targets in CMTs, POLA2 and APEX1, especially in simple carcinomas. Thus, our work elucidates stemness as a potential mechanism behind the aggressiveness and development of canine mammary tumors, especially in simple carcinomas, describing evidence of a promising strategy to target this disease.

19.
Heliyon ; 10(4): e25692, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38370230

RESUMEN

Thermotolerance has become an essential factor in the prevention of the adverse effects of heat stress, but it varies among animals. Identifying genes related to heat adaptability traits is important for improving thermotolerance and for selecting more productive animals in hot environments. The primary objective of this research was to find candidate genes in the liver that play a crucial role in the heat stress response of Santa Ines sheep, which exhibit varying levels of heat tolerance. To achieve this goal, 80 sheep were selected based on their thermotolerance and placed in a climate chamber for 10 days, during which the average temperature was maintained at 36 °C from 10 a.m. to 4 p.m. and 28 °C from 4 p.m. to 10 a.m. A subset of 14 extreme animals, with seven thermotolerant and seven non-thermotolerant animals based on heat loss (rectal temperature), were selected for liver sampling. RNA sequencing and differential gene expression analysis were performed. Thermotolerant sheep showed higher expression of genes GPx3, RGS6, GPAT3, VLDLR, LOC101108817, and EVC. These genes were mainly related to the Hedgehog signaling pathway, glutathione metabolism, glycerolipid metabolism, and thyroid hormone synthesis. These enhanced pathways in thermotolerant animals could potentially mitigate the negative effects of heat stress, conferring greater heat resistance.

20.
Sci Rep ; 14(1): 13056, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844487

RESUMEN

Metagenomics has made it feasible to elucidate the intricacies of the ruminal microbiome and its role in the differentiation of animal production phenotypes of significance. The search for mobile genetic elements (MGEs) has taken on great importance, as they play a critical role in the transfer of genetic material between organisms. Furthermore, these elements serve a dual purpose by controlling populations through lytic bacteriophages, thereby maintaining ecological equilibrium and driving the evolutionary progress of host microorganisms. In this study, we aimed to identify the association between ruminal bacteria and their MGEs in Nellore cattle using physical chromosomal links through the Hi-C method. Shotgun metagenomic sequencing and the proximity ligation method ProxiMeta were used to analyze DNA, getting 1,713,111,307 bp, which gave rise to 107 metagenome-assembled genomes from rumen samples of four Nellore cows maintained on pasture. Taxonomic analysis revealed that most of the bacterial genomes belonged to the families Lachnospiraceae, Bacteroidaceae, Ruminococcaceae, Saccharofermentanaceae, and Treponemataceae and mostly encoded pathways for central carbon and other carbohydrate metabolisms. A total of 31 associations between host bacteria and MGE were identified, including 17 links to viruses and 14 links to plasmids. Additionally, we found 12 antibiotic resistance genes. To our knowledge, this is the first study in Brazilian cattle that connect MGEs with their microbial hosts. It identifies MGEs present in the rumen of pasture-raised Nellore cattle, offering insights that could advance biotechnology for food digestion and improve ruminant performance in production systems.


Asunto(s)
Secuencias Repetitivas Esparcidas , Rumen , Animales , Bovinos , Rumen/microbiología , Secuencias Repetitivas Esparcidas/genética , Metagenómica/métodos , Metagenoma , Microbiota/genética , Microbioma Gastrointestinal/genética , Bacterias/genética , Bacterias/clasificación , Genoma Bacteriano , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA