Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(28): 7456-7461, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28652328

RESUMEN

Phytopathogens promote virulence by, for example, exploiting signaling pathways mediated by phytohormones such as abscisic acid (ABA) and jasmonate (JA). Some plants can counteract pathogen virulence by invoking a potent form of immunity called effector-triggered immunity (ETI). Here, we report that ABA and JA mediate inactivation of the immune-associated MAP kinases (MAPKs), MPK3 and MPK6, in Arabidopsis thaliana ABA induced expression of genes encoding the protein phosphatases 2C (PP2Cs), HAI1, HAI2, and HAI3 through ABF/AREB transcription factors. These three HAI PP2Cs interacted with MPK3 and MPK6 and were required for ABA-mediated MPK3/MPK6 inactivation and immune suppression. The bacterial pathogen Pseudomonas syringae pv. tomato (Pto) DC3000 activates ABA signaling and produces a JA-mimicking phytotoxin, coronatine (COR), that promotes virulence. We found that Pto DC3000 induces HAI1 through COR-mediated activation of MYC2, a master transcription factor in JA signaling. HAI1 dephosphorylated MPK3 and MPK6 in vitro and was necessary for COR-mediated suppression of MPK3/MPK6 activation and immunity. Intriguingly, upon ETI activation, A. thaliana plants overcame the HAI1-dependent virulence of COR by blocking JA signaling. Finally, we showed conservation of induction of HAI PP2Cs by ABA and JA in other Brassicaceae species. Taken together, these results suggest that ABA and JA signaling pathways, which are hijacked by the bacterial pathogen, converge on the HAI PP2Cs that suppress activation of the immune-associated MAPKs. Also, our data unveil interception of JA-signaling activation as a host counterstrategy against the bacterial suppression of MAPKs during ETI.


Asunto(s)
Ácido Abscísico/química , Arabidopsis/inmunología , Arabidopsis/microbiología , Ciclopentanos/química , Sistema de Señalización de MAP Quinasas , Oxilipinas/química , Aminoácidos/química , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , Fosfatasa 1 de Especificidad Dual/metabolismo , Activación Enzimática , Regulación de la Expresión Génica de las Plantas , Indenos/química , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/química , Inmunidad de la Planta , Proteína Fosfatasa 2C/metabolismo , Pseudomonas syringae , Ácido Salicílico/metabolismo , Transducción de Señal , Virulencia
2.
Plant Cell Environ ; 39(2): 453-66, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26386366

RESUMEN

Plants defend against attack from herbivores by direct and indirect defence mechanisms mediated by the accumulation of phytoalexins and release of volatile signals, respectively. While the defensive arsenals of some plants, such as tobacco and Arabidopsis are well known, most of rice's (Oryza sativa) defence metabolites and their effectiveness against herbivores remain uncharacterized. Here, we used a non-biassed metabolomics approach to identify many novel herbivory-regulated metabolic signatures in rice. Most were up-regulated by herbivore attack while only a few were suppressed. Two of the most prominent up-regulated signatures were characterized as phenolamides (PAs), p-coumaroylputrescine and feruloylputrescine. PAs accumulated in response to attack by both chewing insects, i.e. feeding of the lawn armyworm (Spodoptera mauritia) and the rice skipper (Parnara guttata) larvae, and the attack of the sucking insect, the brown planthopper (Nilaparvata lugens, BPH). In bioassays, BPH insects feeding on 15% sugar solution containing p-coumaroylputrescine or feruloylputrescine, at concentrations similar to those elicited by heavy BPH attack in rice, had a higher mortality compared to those feeding on sugar diet alone. Our results highlight PAs as a rapidly expanding new group of plant defence metabolites that are elicited by herbivore attack, and deter herbivores in rice and other plants.


Asunto(s)
Herbivoria/fisiología , Metabolómica/métodos , Oryza/metabolismo , Oryza/parasitología , Biología de Sistemas/métodos , Amidas/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Hemípteros/fisiología , Enfermedades de las Plantas/parasitología , Hojas de la Planta/metabolismo , Reproducibilidad de los Resultados , Plantones/metabolismo , Espectrometría de Masa por Ionización de Electrospray
3.
J Integr Plant Biol ; 55(8): 775-84, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23621526

RESUMEN

Plants produce jasmonic acid (JA) and its amino acid conjugate, jasmonoyl-L-isoleucine (JA-Ile) as major defense signals in response to wounding and herbivory. In rice (Oryza sativa), JA and JA-Ile rapidly increased after mechanical damage, and this increase was further amplified when the wounds were treated with oral secretions from generalist herbivore larvae, lawn armyworms (Spodoptera mauritia), revealing for the first time active perception mechanisms of herbivore-associated elicitor(s) in rice. In the rice genome, two OsJAR genes can conjugate JA and Ile and form JA-Ile in vitro; however, their function in herbivory-induced accumulation of JA-Ile has not been investigated. By functional characterization of TOS17 retrotransposon-tagged Osjar1 plants and their response to simulated herbivory, we show that OsJAR1 is essential for JA-Ile production in herbivore-attacked, field-grown plants. In addition, OsJAR1 was required for normal seed development in rice under field conditions. Our results suggest that OsJAR1 possesses at least two major functions in rice defense and development that cannot be complemented by the additional OsJAR2 gene function, although this gene previously showed overlapping enzyme activity in vitro.


Asunto(s)
Ciclopentanos/metabolismo , Herbivoria , Isoleucina/análogos & derivados , Oryza/fisiología , Oxilipinas/metabolismo , Animales , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Isoleucina/biosíntesis , Retroelementos , Plantones/metabolismo , Semillas/crecimiento & desarrollo , Spodoptera
4.
Biochem Biophys Res Commun ; 374(1): 60-3, 2008 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-18611393

RESUMEN

Gastrin and ghrelin are secreted from G cells and X/A-like cells in the stomach, respectively, and respective hormones stimulate gastric acid secretion by acting through histamine and the vagus nerve. In this study, we examined the relationship between gastrin, ghrelin and gastric acid secretion in rats. Intravenous (iv) administration of 3 and 10 nmol of gastrin induced transient increases of ghrelin levels within 10 min in a dose-dependent manner. Double immunostaining for ghrelin and gastrin receptor revealed that a proportion of ghrelin cells possess gastrin receptors. Although (iv) administration of gastrin or ghrelin induced significant gastric acid secretion, simultaneous treatment with both hormones resulted in a synergistic, rather than additive, increase of gastric acid secretion. This synergistic increase was not observed in vagotomized rats. These results suggest that gastrin may directly stimulate ghrelin release from the stomach, and that both hormones may increase gastric acid secretion synergistically.


Asunto(s)
Ácido Gástrico/metabolismo , Mucosa Gástrica/metabolismo , Gastrinas/fisiología , Ghrelina/fisiología , Animales , Mucosa Gástrica/efectos de los fármacos , Gastrinas/administración & dosificación , Ghrelina/administración & dosificación , Inyecciones Intravenosas , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA