Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Pathol ; 263(4-5): 482-495, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38872438

RESUMEN

Liver fibrosis is the consequence of chronic liver injury in the presence of an inflammatory component. Although the main executors of this activation are known, the mechanisms that lead to the inflammatory process that mediates the production of pro-fibrotic factors are not well characterized. Epidermal growth factor receptor (EGFR) signaling in hepatocytes is essential for the regenerative processes of the liver; however, its potential role in regulating the fibrotic niche is not yet clear. Our group generated a mouse model that expresses an inactive truncated form of the EGFR specifically in hepatocytes (ΔEGFR mice). Here, we have analyzed the response of WT and ΔEGFR mice to chronic treatment with carbon tetrachloride (CCl4), which induces a pro-inflammatory and fibrotic process in the liver. The results indicated that the hallmarks of liver fibrosis were attenuated in CCl4-treated ΔEGFR mice when compared with CCl4-treated WT mice, coinciding with a faster resolution of the fibrotic process and ameliorated damage. The absence of EGFR activity in hepatocytes induced changes in the pattern of immune cells in the liver, with a notable increase in the population of M2 macrophages, more related to fibrosis resolution, as well as in the population of lymphocytes related to eradication of the damage. Transcriptome analysis of hepatocytes, and secretome studies of extracellular media from in vitro experiments, allowed us to elucidate the specific molecular mechanisms regulated by EGFR that mediate hepatocyte production of both pro-fibrotic and pro-inflammatory mediators; these have consequences for the deposition of extracellular matrix proteins, as well as for the immune microenvironment. Overall, our study uncovered novel mechanistic insights regarding EGFR kinase-dependent actions in hepatocytes that reveal its key role in chronic liver damage. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Tetracloruro de Carbono , Receptores ErbB , Hepatocitos , Transducción de Señal , Animales , Receptores ErbB/metabolismo , Hepatocitos/metabolismo , Hepatocitos/patología , Hígado/patología , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones , Ratones Endogámicos C57BL , Masculino , Comunicación Celular , Macrófagos/metabolismo , Macrófagos/patología , Ratones Transgénicos
2.
Dermatol Surg ; 41(6): 677-84, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25973561

RESUMEN

BACKGROUND: Constitutive activation of the Erk pathway can lead to oncogenic transformation. However, the Erk pathway is not activated in human basal cell carcinomas (BCCs); although in animal models, this seems to be important. OBJECTIVE: To help understand the role of Erk activity in BCC formation. MATERIALS AND METHODS: The authors assayed the specific levels of phosphorylated Erk by immunohistochemistry in BCCs and normal skin biopsies. They have also analyzed Erk activation by immunoblot in fibroblasts isolated from BCC. RESULTS: By immunohistochemical analysis, the authors have observed that 10 of BCCs (56%) did not show phosphor-Erk staining in tumor masses and 7 (40%) showed a gradient staining exhibiting phospho-Erk only in the epidermal side of tumor masses. Remarkably, 15 BCC samples (83%) showed phospho-Erk accumulation in stroma. Six of the 9 independent cultures of dermal fibroblasts isolated from BCC maintained Erk activation "in vitro." CONCLUSION: The authors propose that there is a specific cell-type regulation of Erk activity in BCC, and this feature may be relevant during BCC formation. Stroma region from BCCs showed Erk activation and reduced proliferation. Conversely, Erk activation is barely detectable in proliferative BCCs.


Asunto(s)
Carcinoma Basocelular/enzimología , Fibroblastos/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neoplasias Cutáneas/enzimología , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Antígeno Ki-67/análisis , Masculino , Proteína Quinasa 1 Activada por Mitógenos/análisis , Proteína Quinasa 3 Activada por Mitógenos/análisis , Fosforilación , Piel/enzimología , Células Tumorales Cultivadas
3.
Redox Biol ; 65: 102818, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37463530

RESUMEN

The NADPH oxidase NOX4 has been proposed as necessary for the apoptosis induced by the Transforming Growth Factor-beta (TGF-ß) in hepatocytes and hepatocellular carcinoma (HCC) cells. However, whether NOX4 is required for TGF-ß-induced canonical (SMADs) or non-canonical signals is not fully understood yet, neither its potential involvement in other parallel actions induced by TGF-ß. In this work we have used CRISPR Cas9 technology to stable attenuate NOX4 expression in HCC cells. Results have indicated that NOX4 is required for an efficient SMAD2/3 phosphorylation in response to TGF-ß, whereas non-canonical signals, such as the phosphorylation of the Epidermal Growth Receptor or AKT, are higher in NOX4 silenced cells. TGF-ß-mediated inhibition of cell proliferation and viability is attenuated in NOX4 silenced cells, correlating with decreased response in terms of apoptosis, and maintenance of high expression of MYC and CYCLIN D1. These results would indicate that NOX4 is required for all the tumor suppressor actions of TGF-ß in HCC. However, analysis in human HCC tumors has revealed a worse prognosis for patients showing high expression of TGF-ß1-related genes concomitant with high expression of NOX4. Deepening into other tumorigenic actions of TGF-ß that may contribute to tumor progression, we found that NOX4 is also required for TGF-ß-induced migratory effects. The Epithelial-Mesenchymal transition (EMT) program does not appear to be affected by attenuation of NOX4 levels. However, TGF-ß-mediated regulation of cytoskeleton dynamics and focal adhesions require NOX4, which is necessary for TGF-ß-induced increase in the chaperone Hsp27 and correct subcellular localization of Hic-5 within focal adhesions, as well for upregulation of the metalloprotease MMP9. All these results together point to NOX4 as a key element in the whole TGF-ß signaling in HCC cells, revealing an unknown role for NOX4 as tumor promoter in HCC patients presenting activation of the TGF-ß pathway.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Factor de Crecimiento Transformador beta , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , Factor de Crecimiento Transformador beta1
4.
Mol Cell Oncol ; 3(5): e1203471, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27857971

RESUMEN

Amplification of cyclin D1 is a frequent alteration in many cancers of different type and origin. We recently described a novel regulatory axis involving cyclin D1 in the regulation of tumor invasion and metastasis. Membrane-associated cyclin D1-CDK4 complexes promote activation of the small GTPase RAC1 through phosphorylation of the regulatory protein paxillin.

5.
Nat Commun ; 7: 11581, 2016 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-27181366

RESUMEN

Cyclin D1 (Ccnd1) together with its binding partner Cdk4 act as a transcriptional regulator to control cell proliferation and migration, and abnormal Ccnd1·Cdk4 expression promotes tumour growth and metastasis. While different nuclear Ccnd1·Cdk4 targets participating in cell proliferation and tissue development have been identified, little is known about how Ccnd1·Cdk4 controls cell adherence and invasion. Here, we show that the focal adhesion component paxillin is a cytoplasmic substrate of Ccnd1·Cdk4. This complex phosphorylates a fraction of paxillin specifically associated to the cell membrane, and promotes Rac1 activation, thereby triggering membrane ruffling and cell invasion in both normal fibroblasts and tumour cells. Our results demonstrate that localization of Ccnd1·Cdk4 to the cytoplasm does not simply act to restrain cell proliferation, but constitutes a functionally relevant mechanism operating under normal and pathological conditions to control cell adhesion, migration and metastasis through activation of a Ccnd1·Cdk4-paxillin-Rac1 axis.


Asunto(s)
Ciclina D1/metabolismo , Citoplasma/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Paxillin/metabolismo , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Ciclina D1/deficiencia , Quinasa 4 Dependiente de la Ciclina/metabolismo , Regulación hacia Abajo/genética , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Fosforilación , Fosfoserina/metabolismo , Unión Proteica , Ratas , Especificidad por Sustrato , Proteína de Unión al GTP rac1/metabolismo
6.
Oncotarget ; 7(19): 26979-91, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27105504

RESUMEN

Cyclin D1 (Ccnd1) is a proto-oncogen amplified in many different cancers and nuclear accumulation of Ccnd1 is a characteristic of tumor cells. Ccnd1 activates the transcription of a large set of genes involved in cell cycle progress and proliferation. However, Ccnd1 also targets cytoplasmic proteins involved in the regulation of cell migration and invasion. In this work, we have analyzed by immunohistochemistry the localization of Ccnd1 in endometrial, breast, prostate and colon carcinomas with different types of invasion. The number of cells displaying membranous or cytoplasmic Ccnd1 was significantly higher in peripheral cells than in inner cells in both collective and pushing invasion patterns of endometrial carcinoma, and in collective invasion pattern of colon carcinoma. Also, the cytoplasmic localization of Ccnd1 was higher when tumors infiltrated as single cells, budding or small clusters of cells. To evaluate cytoplasmic function of cyclin D1, we have built a variant (Ccnd1-CAAX) that remains attached to the cell membrane therefore sequestering this cyclin in the cytoplasm. Tumor cells harboring Ccnd1-CAAX showed high levels of invasiveness and metastatic potential compared to those containing the wild type allele of Ccnd1. However, Ccnd1-CAAX expression did not alter proliferative rates of tumor cells. We hypothesize that the role of Ccnd1 in the cytoplasm is mainly associated with the invasive capability of tumor cells. Moreover, we propose that subcellular localization of Ccnd1 is an interesting guideline to measure cancer outcome.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Ciclina D1/metabolismo , Citoplasma/metabolismo , Neoplasias/metabolismo , Secuencias de Aminoácidos/genética , Animales , Biomarcadores de Tumor/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Células Cultivadas , Neoplasias del Colon/metabolismo , Ciclina D1/genética , Neoplasias Endometriales/metabolismo , Femenino , Humanos , Inmunohistoquímica , Masculino , Ratones Desnudos , Ratones SCID , Microscopía Confocal , Invasividad Neoplásica , Neoplasias de la Próstata/metabolismo
7.
Cell Cycle ; 12(15): 2510-7, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23839032

RESUMEN

The function of Cyclin D1 (CycD1) has been widely studied in the cell nucleus as a regulatory subunit of the cyclin-dependent kinases Cdk4/6 involved in the control of proliferation and development in mammals. CycD1 has been also localized in the cytoplasm, where its function nevertheless is poorly characterized. In this work we have observed that in normal skin as well as in primary cultures of human keratinocytes, cytoplasmic localization of CycD1 correlated with the degree of differentiation of the keratinocyte. In these conditions, CycD1 co-localized in cytoplasmic foci with exocyst components (Sec6) and regulators (RalA), and with ß1 integrin, suggesting a role for CycD1 in the regulation of keratinocyte adhesion during differentiation. Consistent with this hypothesis, CycD1 overexpression increased ß1 integrin recycling and drastically reduced the ability of keratinocytes to adhere to the extracellular matrix. We propose that localization of CycD1 in the cytoplasm during skin differentiation could be related to the changes in detachment ability of keratinocytes committed to differentiation.


Asunto(s)
Adhesión Celular , Diferenciación Celular , Ciclina D1/metabolismo , Queratinocitos/metabolismo , Piel/citología , Células Cultivadas , Citoplasma/metabolismo , Matriz Extracelular/metabolismo , Humanos , Integrina beta1/metabolismo , Queratinocitos/fisiología , Transporte de Proteínas , Proteínas de Transporte Vesicular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA