Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Biochem Biophys Res Commun ; 634: 83-91, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36240653

RESUMEN

Bladder cancer is an often widely disseminated and deadly cancer. To block the malignant outgrowth of bladder cancer, we must elucidate the molecular-level characteristics of not only bladder cancer cells but also their surrounding milieu. As part of this effort, we have long been studying extracellular S100A8/A9, which is elevated by the inflammation associated with certain cancers. Extracellularly enriched S100A8/A9 can hasten a shift to metastatic transition in multiple types of cancer cells. Intriguingly, high-level S100A8/A9 has been detected in the urine of bladder-cancer patients, and the level increases with the stage of malignancy. Nonetheless, S100A8/A9 has been investigated mainly as a potential biomarker of bladder cancers, and there have been no investigations of its role in bladder-cancer growth and metastasis. We herein report that extracellular S100A8/A9 induces upregulation of growth, migration and invasion in bladder cancer cells through its binding with cell-surface Toll-like receptor 4 (TLR4). Our molecular analysis revealed the TLR4 downstream signal that accelerates such cancer cell events. Tumor progression locus 2 (TPL2) was a key factor facilitating the aggressiveness of cancer cells. Upon binding of S100A8/A9 with TLR4, TPL2 activation was enhanced by an action with a TLR4 adaptor molecule, TIR domain-containing adaptor protein (TIRAP), which in turn led to activation of the mitogen-activated protein kinase (MAPK) cascade of TPL2. Finally, we showed that sustained inhibition of TLR4 in cancer cells effectively dampened cancer survival in vivo. Collectively, our results indicate that the S100A8/A9-TLR4-TPL2 axis influences the growth, survival, and invasive motility of bladder cancer cells.


Asunto(s)
Receptor Toll-Like 4 , Neoplasias de la Vejiga Urinaria , Humanos , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Interleucina-1 , Receptor Toll-Like 4/metabolismo , Vejiga Urinaria/metabolismo
2.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36232335

RESUMEN

Secondary lymphoid tissues, such as the spleen and lymph nodes (LNs), contribute to breast cancer development and metastasis in both anti- and pro-tumoral directions. Although secondary lymphoid tissues have been extensively studied, very little is known about the immune conversion in mesenteric LNs (mLNs) during breast cancer development. Here, we demonstrate inflammatory immune conversion of mLNs in a metastatic 4T1 breast cancer model. Splenic T cells were significantly decreased and continuously suppressed IFN-γ production during tumor development, while myeloid-derived suppressor cells (MDSCs) were dramatically enriched. However, T cell numbers in the mLN did not decrease, and the MDSCs only moderately increased. T cells in the mLN exhibited conversion from a pro-inflammatory state with high IFN-γ expression to an anti-inflammatory state with high expression of IL-4 and IL-10 in early- to late-stages of breast cancer development. Interestingly, increased migration of CD103+CD11b+ dendritic cells (DCs) into the mLN, along with increased (1→3)-ß-D-glucan levels in serum, was observed even in late-stage breast cancer. This suggests that CD103+CD11b+ DCs could prime cancer-reactive T cells. Together, the data indicate that the mLN is an important lymphoid tissue contributing to breast cancer development.


Asunto(s)
Neoplasias de la Mama , Interleucina-10 , Neoplasias , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Células Dendríticas , Glucanos/metabolismo , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Ganglios Linfáticos/metabolismo , Ratones , Neoplasias/metabolismo
3.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142212

RESUMEN

The dissection of the complex multistep process of metastasis exposes vulnerabilities that could be exploited to prevent metastasis. To search for possible factors that favor metastatic outgrowth, we have been focusing on secretory S100A8/A9. A heterodimer complex of the S100A8 and S100A9 proteins, S100A8/A9 functions as a strong chemoattractant, growth factor, and immune suppressor, both promoting the cancer milieu at the cancer-onset site and cultivating remote, premetastatic cancer sites. We previously reported that melanoma cells show lung-tropic metastasis owing to the abundant expression of S100A8/A9 in the lung. In the present study, we addressed the question of why melanoma cells are not metastasized into the brain at significant levels in mice despite the marked induction of S100A8/A9 in the brain. We discovered the presence of plasma histidine-rich glycoprotein (HRG), a brain-metastasis suppression factor against S100A8/A9. Using S100A8/A9 as an affinity ligand, we searched for and purified the binding plasma proteins of S100A8/A9 and identified HRG as the major protein on mass spectrometric analysis. HRG prevents the binding of S100A8/A9 to the B16-BL6 melanoma cell surface via the formation of the S100A8/A9 complex. HRG also inhibited the S100A8/A9-induced migration and invasion of A375 melanoma cells. When we knocked down HRG in mice bearing skin melanoma, metastasis to both the brain and lungs was significantly enhanced. The clinical examination of plasma S100A8/A9 and HRG levels showed that lung cancer patients with brain metastasis had higher S100A8/A9 and lower HRG levels than nonmetastatic patients. These results suggest that the plasma protein HRG strongly protects the brain and lungs from the threat of melanoma metastasis.


Asunto(s)
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Neoplasias Pulmonares , Melanoma Experimental , Proteínas/metabolismo , Animales , Calgranulina A/sangre , Calgranulina A/genética , Calgranulina B/sangre , Factores Quimiotácticos , Ligandos , Neoplasias Pulmonares/metabolismo , Ratones
4.
Int J Cancer ; 144(12): 3138-3145, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30365872

RESUMEN

Within the "seed and soil" theory of organ tropic cancer metastasis is a growing compilation of evidence that S100A8/A9 functions as a soil signal that attracts cancer cells to certain organs, which prove beneficial to their growth. S100A8/A9-sensing receptors including Toll-like receptor 4 (TLR4), advanced glycation end products (RAGE), and also important receptors we recently succeeded in identifying (EMMPRIN, NPTNß, MCAM, and ALCAM) have the potential to become promising therapeutic targets. In our study, we prepared extracellular regions of these novel molecules and fused them to human IgG2-Fc to extend half-life expectancy, and we evaluated the anti-metastatic effects of the purified decoy proteins on metastatic cancer cells. The purified proteins markedly suppressed S100A8/A9-mediated lung tropic cancer metastasis. We hence expect that our novel biologics may become a prominent medicine to prevent cancer metastasis in clinical settings through cutting the linkage between "seed and soil".


Asunto(s)
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Melanoma Experimental/prevención & control , Melanoma Experimental/secundario , Proteínas Recombinantes de Fusión/farmacología , Animales , Basigina/química , Basigina/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/farmacología , Humanos , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/farmacología , Inmunoglobulina G/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Dominios Proteicos , Receptor para Productos Finales de Glicación Avanzada/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo
5.
Int J Cancer ; 145(2): 569-575, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30414170

RESUMEN

The metastatic dissemination of cancer cells to remote areas of the body is the most problematic aspect in cancer patients. Among cancers, melanomas are notoriously difficult to treat due to their significantly high metastatic potential even during early stages. Hence, the establishment of advanced therapeutic approaches to regulate metastasis is required to overcome the melanoma disease. An accumulating mass of evidence has indicated a critical role of extracellular S100A8/A9 in melanoma distant metastasis. Lung S100A8/A9 is induced by melanoma cells from distant organs and it attracts these cells to its enriched lung environment since melanoma cells possess several receptors that sense the S100A8/A9 ligand. We hence aimed to develop a neutralizing antibody against S100A8/A9 that would efficiently block melanoma lung metastasis. Our protocol provided us with one prominent antibody, Ab45 that efficiently suppressed not only S100A8/A9-mediated melanoma mobility but also lung tropic melanoma metastasis in a mouse model. This prompted us to make chimeric Ab45, a chimera antibody consisting of mouse Ab45-Fab and human IgG2-Fc. Chimeric Ab45 also showed significant inhibition of the lung metastasis of melanoma. From these results, we have high hopes that the newly produced antibody will become a potential biological tool to block melanoma metastasis in future clinical settings.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/secundario , Melanoma/tratamiento farmacológico , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/farmacología , Calgranulina A/inmunología , Calgranulina B/inmunología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Melanoma/metabolismo , Ratones , Resultado del Tratamiento , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Mol Carcinog ; 58(6): 980-995, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30720226

RESUMEN

Compiling evidence indicates an unusual role of extracellular S100A8/A9 in cancer metastasis. S100A8/A9 secreted from either cancer cells or normal cells including epithelial and inflammatory cells stimulates cancer cells through S100A8/A9 sensor receptors in an autocrine or paracrine manner, leading to cancer cell metastatic progression. We previously reported a novel S100A8/A9 receptor, neuroplastin-ß (NPTNß), which plays a critical role in atopic dermatitis when it is highly activated in keratinocytes by an excess amount of extracellular S100A8/A9 in the inflammatory skin lesion. Interestingly, our expression profiling of NPTNß showed significantly high expression levels in lung cancer cell lines in a consistent manner. We hence aimed to determine the significance of NPTNß as an S100A8/A9 receptor in lung cancer. Our results showed that NPTNß has strong ability to induce cancer-related cellular events, including anchorage-independent growth, motility and invasiveness, in lung cancer cells in response to extracellular S100A8/A9, eventually leading to the expression of a cancer disseminative phenotype in lung tissue in vivo. Mechanistic investigation revealed that binding of S100A8/A9 to NPTNß mediates activation of NFIA and NFIB and following SPDEF transcription factors through orchestrated upstream signals from TRAF2 and RAS, which is linked to anchorage-independent growth, motility and invasiveness. Overall, our results indicate the importance of the S100A8/A9-NPTNß axis in lung cancer disseminative progression and reveal a pivotal role of its newly identified downstream signaling, TRAF2/RAS-NFIA/NFIB-SPDEF, in linking to the aggressive development of lung cancers.


Asunto(s)
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Neoplasias Pulmonares/patología , Glicoproteínas de Membrana/metabolismo , Regulación hacia Arriba , Células A549 , Animales , Línea Celular Tumoral , Movimiento Celular , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Factores de Transcripción NFI/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Transducción de Señal
7.
Biosci Biotechnol Biochem ; 80(5): 1012-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26828632

RESUMEN

Rhodococcus jostii RHA1 (RHA1) degrades polychlorinated biphenyl (PCB) via co-metabolism with biphenyl. To identify the novel open reading frames (ORFs) that contribute to PCB/biphenyl metabolism in RHA1, we compared chromatin immunoprecipitation chip and transcriptomic data. Six novel ORFs involved in PCB/biphenyl metabolism were identified. Gene deletion mutants of these 6 ORFs were made and were tested for their ability to grow on biphenyl. Interestingly, only the ro10225 deletion mutant showed deficient growth on biphenyl. Analysis of Ro10225 protein function showed that growth of the ro10225 deletion mutant on biphenyl was recovered when exogenous recombinant Ro10225 protein was added to the culture medium. Although Ro10225 protein has no putative secretion signal sequence, partially degraded Ro10225 protein was detected in conditioned medium from wild-type RHA1 grown on biphenyl. This Ro10225 fragment appeared to form a complex with another PCB/biphenyl oxidation enzyme. These results indicated that Ro10225 protein is essential for the formation of the PCB/biphenyl dioxygenase complex in RHA1.


Asunto(s)
Proteínas Bacterianas/genética , Compuestos de Bifenilo/metabolismo , Dioxigenasas/genética , Regulación Bacteriana de la Expresión Génica , Bifenilos Policlorados/metabolismo , Rhodococcus/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Compuestos de Bifenilo/farmacología , Inmunoprecipitación de Cromatina , Clonación Molecular , Medios de Cultivo Condicionados/química , Dioxigenasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica , Prueba de Complementación Genética , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Bifenilos Policlorados/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodococcus/efectos de los fármacos , Rhodococcus/enzimología , Transcriptoma
8.
J Biol Chem ; 289(34): 23389-402, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25002577

RESUMEN

The receptor for advanced glycation end products (RAGE) is involved in the pathogenesis of many inflammatory, degenerative, and hyperproliferative diseases, including cancer. Previously, we revealed mechanisms of downstream signaling from ligand-activated RAGE, which recruits TIRAP/MyD88. Here, we showed that DNAX-activating protein 10 (DAP10), a transmembrane adaptor protein, also binds to RAGE. By artificial oligomerization of RAGE alone or RAGE-DAP10, we found that RAGE-DAP10 heterodimer formation resulted in a marked enhancement of Akt activation, whereas homomultimeric interaction of RAGE led to activation of caspase 8. Normal human epidermal keratinocytes exposed to S100A8/A9, a ligand for RAGE, at a nanomolar concentration mimicked the pro-survival response of RAGE-DAP10 interaction, although at a micromolar concentration, the cells mimicked the pro-apoptotic response of RAGE-RAGE. In transformed epithelial cell lines, A431 and HaCaT, in which endogenous DAP10 was overexpressed, and S100A8/A9, even at a micromolar concentration, led to cell growth and survival due to RAGE-DAP10 interaction. Functional blocking of DAP10 in the cell lines abrogated the Akt phosphorylation from S100A8/A9-activated RAGE, eventually leading to an increase in apoptosis. Finally, S100A8/A9, RAGE, and DAP10 were overexpressed in the psoriatic epidermis. Our findings indicate that the functional interaction between RAGE and DAP10 coordinately regulates S100A8/A9-mediated survival and/or apoptotic response of keratinocytes.


Asunto(s)
Queratinocitos/metabolismo , Receptores Inmunológicos/metabolismo , Transducción de Señal , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Células Cultivadas , Humanos , Células Asesinas Naturales/inmunología , Psoriasis/metabolismo , Interferencia de ARN , Receptor para Productos Finales de Glicación Avanzada
9.
Bioconjug Chem ; 26(10): 2076-84, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26355635

RESUMEN

Humoral immune responses against tumor-associated antigens (TAAs) or cancer/testis antigens (CTAs) aberrantly expressed in tumor cells are frequently observed in cancer patients. Recent clinical studies have elucidated that anticancer immune responses with increased levels of anti-TAA/CTA antibodies improve cancer survival rates. Thus, these antibody levels are promising biomarkers for diagnosing the efficiency of cancer immunotherapy. Full-length antigens are favored for detecting anti-TAA/CTA antibodies because candidate antigen proteins contain multiple epitopes throughout their structures. In this study, we developed a methodology to prepare purified water-soluble and full-length antigens by using cysteine sulfhydryl group cationization (S-cationization) chemistry. S-Cationized antigens can be prepared from bacterial inclusion bodies, and they exhibit improved protein solubility but preserved antigenicity. Anti-TAA/CTA antibodies detected in cancer patients appeared to recognize linear epitopes, as well as conformational epitopes, and because the frequency of cysteine side-residues on the epitope-paratope interface was low, any adverse effects of S-cationization were virtually negligible for antibody binding. Furthermore, S-cationized antigen-immobilized Luminex beads could be successfully used in highly sensitive quantitative-multiplexed assays. Indeed, patients with a more broadly induced serum anti-TAA/CTA antibody level showed improved progression-free survival after immunotherapy. The comprehensive anti-TAA/CTA assay system, which uses S-cationized full-length and water-soluble recombinant antigens, may be a useful diagnostic tool for assessing the efficiency of cancer immunotherapy.


Asunto(s)
Antígenos de Neoplasias/aislamiento & purificación , Autoanticuerpos/análisis , Inmunoensayo/métodos , Neoplasias/inmunología , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/metabolismo , Autoanticuerpos/metabolismo , Cationes/química , Supervivencia sin Enfermedad , Ensayo de Inmunoadsorción Enzimática , Epítopos , Humanos , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/inmunología , Neoplasias/mortalidad , Desnaturalización Proteica , Sensibilidad y Especificidad , Solubilidad , Azufre/química
10.
Front Oncol ; 14: 1371307, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863623

RESUMEN

Background: Triple-negative breast cancer (TNBC) cells are a highly formidable cancer to treat. Nonetheless, by continued investigation into the molecular biology underlying the complex regulation of TNBC cell activity, vulnerabilities can be exposed as potential therapeutic targets at the molecular level. We previously revealed that lysyl oxidase-like 4 (LOXL4) promotes the invasiveness of TNBC cells via cell surface annexin A2 as a novel binding substrate of LOXL4, which promotes the abundant localization of integrin-ß1 at the cancer plasma membrane. However, it has yet to be uncovered how the LOXL4-mediated abundance of integrin-ß1 hastens the invasive outgrowth of TNBC cells at the molecular level. Methods: LOXL4-overexpressing stable clones were established from MDA-MB-231 cells and subjected to molecular analyses, real-time qPCR and zymography to clarify their invasiveness, signal transduction, and matrix metalloprotease (MMP) activity, respectively. Results: Our results show that LOXL4 potently promotes the induction of matrix metalloprotease 9 (MMP9) via activation of nuclear factor-κB (NF-κB). Our molecular analysis revealed that TNF receptor-associated factor 4 (TRAF4) and TGF-ß activated kinase 1 (TAK1) were required for the activation of NF-κB through Iκß kinase kinase (IKKα/ß) phosphorylation. Conclusion: Our results demonstrate that the newly identified LOXL4-mediated axis, integrin-ß1-TRAF4-TAK1-IKKα/ß-Iκßα-NF-κB-MMP9, is crucial for TNBC cell invasiveness.

11.
Front Oncol ; 14: 1371342, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38595825

RESUMEN

Background: Our earlier research revealed that the secreted lysyl oxidase-like 4 (LOXL4) that is highly elevated in triple-negative breast cancer (TNBC) acts as a catalyst to lock annexin A2 on the cell membrane surface, which accelerates invasive outgrowth of the cancer through the binding of integrin-ß1 on the cell surface. However, whether this machinery is subject to the LOXL4-mediated intrusive regulation remains uncertain. Methods: Cell invasion was assessed using a transwell-based assay, protein-protein interactions by an immunoprecipitation-Western blotting technique and immunocytochemistry, and plasmin activity in the cell membrane by gelatin zymography. Results: We revealed that cell surface annexin A2 acts as a receptor of plasminogen via interaction with S100A10, a key cell surface annexin A2-binding factor, and S100A11. We found that the cell surface annexin A2/S100A11 complex leads to mature active plasmin from bound plasminogen, which actively stimulates gelatin digestion, followed by increased invasion. Conclusion: We have refined our understanding of the role of LOXL4 in TNBC cell invasion: namely, LOXL4 mediates the upregulation of annexin A2 at the cell surface, the upregulated annexin 2 binds S100A11 and S100A10, and the resulting annexin A2/S100A11 complex acts as a receptor of plasminogen, readily converting it into active-form plasmin and thereby enhancing invasion.

12.
Protein Sci ; 32(10): e4771, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37638851

RESUMEN

Serum autoantibody profiles are unique to individuals and reflect the level and history of autoimmunity and tumor immunity. The identification of autoantibody biomarkers is critical for the development of immune monitoring systems for immune-related disorders. Here, we present a practical method for large-scale autoantibody discovery using total cellular proteins from cultured mammalian cells. We found that nucleic acid-free and fully denatured water-soluble total cellular proteins from mammalian cells were superior, allowing precise separation by reversed-phase HPLC after preparing a large set of homogeneous total cellular proteins. After separating the proteins based on hydrophobicity, the fractionated samples were subjected to molecular mass analysis using conventional SDS-PAGE. The resulting two-dimensional gel electrophoresis was successfully employed for immune blotting and LC-MS/MS analysis. All procedures, including TRIzol-based total cellular protein extraction, solubilization of denatured proteins, reversed-phase HPLC separation, and SDS-PAGE, were highly reproducible and easily scalable. We propose this novel two-dimensional gel electrophoresis system as an alternative proteomics-based methodology suitable for large-scale autoantibody discovery.


Asunto(s)
Autoanticuerpos , Espectrometría de Masas en Tándem , Animales , Humanos , Cromatografía Liquida , Proteínas/análisis , Electroforesis en Gel de Poliacrilamida , Interacciones Hidrofóbicas e Hidrofílicas , Mamíferos
13.
J Mol Med (Berl) ; 101(4): 431-447, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36869893

RESUMEN

The adenovirus-REIC/Dkk-3 expression vector (Ad-REIC) has been the focus of numerous clinical studies due to its potential for the quenching of cancers. The cancer-suppressing mechanisms of the REIC/DKK-3 gene depend on multiple pathways that exert both direct and indirect effects on cancers. The direct effect is triggered by REIC/Dkk-3-mediated ER stress that causes cancer-selective apoptosis, and the indirect effect can be classified in two ways: (i) induction, by Ad-REIC-mis-infected cancer-associated fibroblasts, of the production of IL-7, an important activator of T cells and NK cells, and (ii) promotion, by the secretory REIC/Dkk-3 protein, of dendritic cell polarization from monocytes. These unique features allow Ad-REIC to exert effective and selective cancer-preventative effects in the manner of an anticancer vaccine. However, the question of how the REIC/Dkk-3 protein leverages anticancer immunity has remained to be answered. We herein report a novel function of the extracellular REIC/Dkk-3-namely, regulation of an immune checkpoint via modulation of PD-L1 on the cancer-cell surface. First, we identified novel interactions of REIC/Dkk-3 with the membrane proteins C5aR, CXCR2, CXCR6, and CMTM6. These proteins all functioned to stabilize PD-L1 on the cell surface. Due to the dominant expression of CMTM6 among the proteins in cancer cells, we next focused on CMTM6 and observed that REIC/Dkk-3 competed with CMTM6 for PD-L1, thereby liberating PD-L1 from its complexation with CMTM6. The released PD-L1 immediately underwent endocytosis-mediated degradation. These results will enhance our understanding of not only the physiological nature of the extracellular REIC/Dkk-3 protein but also the Ad-REIC-mediated anticancer effects. KEY MESSAGES: • REIC/Dkk-3 protein effectively suppresses breast cancer progression through an acceleration of PD-L1 degradation. • PD-L1 stability on the cancer cell membrane is kept high by binding with mainly CMTM6. • Competitive binding of REIC/Dkk-3 protein with CMTM6 liberates PD-L1, leading to PD-L1 degradation.


Asunto(s)
Antígeno B7-H1 , Neoplasias de la Mama , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular , Proteínas Adaptadoras Transductoras de Señales/metabolismo
14.
J Biol Chem ; 286(9): 7182-9, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21177249

RESUMEN

Accumulating evidence indicates that dysfunction of mitochondria is a common feature of Parkinson disease. Functional loss of a familial Parkinson disease-linked gene, BRPK/PINK1 (PINK1), results in deterioration of mitochondrial functions and eventual neuronal cell death. A mitochondrial chaperone protein has been shown to be a substrate of PINK1 kinase activity. In this study, we demonstrated that PINK1 has another action point in the cytoplasm. Phosphorylation of Akt at Ser-473 was enhanced by overexpression of PINK1, and the Akt activation was crucial for protection of SH-SY5Y cells from various cytotoxic agents, including oxidative stress. Enhanced Akt phosphorylation was not due to activation of phosphatidylinositol 3-kinase but due to activation of mammalian target of rapamycin complex 2 (mTORC2) by PINK1. Rictor, a specific component of mTORC2, was phosphorylated by overexpression of PINK1. Furthermore, overexpression of PINK1 enhanced cell motility. These results indicate that PINK1 exerts its cytoprotective function not only in mitochondria but also in the cytoplasm through activation of mTORC2.


Asunto(s)
Proteínas Portadoras/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción/metabolismo , Apoptosis/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Citosol/metabolismo , Receptores ErbB/metabolismo , Expresión Génica/fisiología , Humanos , Masculino , Mitocondrias/metabolismo , Neuroblastoma , Estrés Oxidativo/fisiología , Enfermedad de Parkinson/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/fisiología , Neoplasias de la Próstata , Proteínas Quinasas/genética , Proteína Asociada al mTOR Insensible a la Rapamicina
15.
Bioconjug Chem ; 23(10): 2025-31, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-22989361

RESUMEN

Protein cationization techniques are powerful protein transduction methods for mammalian cells. As we demonstrated previously, cationized proteins with limited conjugation to polyethylenimine have excellent ability to enter into cells by adsorption-mediated endocytosis [Futami, J., et al. (2005) J. Biosci. Bioeng. 99, 95-103]. In this study, we show that proteins with extensive and uniform cationization covering the protein surface reach the cytoplasm and nucleus more effectively than proteins with limited cationic polymers or proteins that are fused to cationic peptides. Although extensive modification of carboxylates results in loss of protein function, chicken avidin retains biotin-binding ability even after extensive amidation of carboxylates. Using this cationized avidin carrier system, the protein transduction ability of variously cationized avidins was investigated using biotinylated protein as a probe. The results revealed that cationized avidins bind rapidly to the cell surface followed by endocytotic uptake. Small amounts of uniformly cationized avidin showed direct penetration into the cytoplasm within a 15 min incubation. This penetration route seemed to be energy dependent and functioned under cellular physiological conditions. A biotinylated exogenous transcription factor protein that penetrated cells was demonstrated to induce target gene expression in living cells.


Asunto(s)
Avidina/química , Avidina/metabolismo , Citosol/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Secuencia de Aminoácidos , Animales , Biotinilación , Pollos , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Péptidos/química , Péptidos/metabolismo , Transporte de Proteínas
16.
Front Oncol ; 12: 869393, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600379

RESUMEN

Serum autoantibody to cancer/testis antigens (CTAs) is a critical biomarker that reflects the antitumor immune response. Quantitative and multiplexed anti-CTA detection arrays can assess the immune status in tumors and monitor therapy-induced antitumor immune reactions. Most full-length recombinant CTA proteins tend to aggregate. Cysteine residue-specific S-cationization techniques facilitate the preparation of water-soluble and full-length CTAs. Combined with Luminex technology, we designed a multiple S-cationized antigen-immobilized bead array (MUSCAT) assay system to evaluate multiple serum antibodies to CTAs. Reducible S-alkyl-disulfide-cationized antigens in cytosolic conditions were employed to develop rabbit polyclonal antibodies as positive controls. These control antibodies sensitively detected immobilized antigens on beads and endogenous antigens in human lung cancer-derived cell lines. Rabbit polyclonal antibodies successfully confirmed the dynamic ranges and quantitative MUSCAT assay results. An immune monitoring study was conducted using the serum samples on an adenovirus-mediated REIC/Dkk-3 gene therapy clinical trial that showed a successful clinical response in metastatic castration-resistant prostate cancer. Autoantibody responses were closely related to clinical outcomes. Notably, upregulation of anti-CTA responses was monitored before tumor regression. Thus, quantitative monitoring of anti-CTA antibody biomarkers can be used to evaluate the cancer-immunity cycle. A quality-certified serum autoantibody monitoring system is a powerful tool for developing and evaluating cancer immunotherapy.

17.
FEBS Lett ; 596(20): 2659-2667, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35953458

RESUMEN

Follicular dendritic cells (FDCs) play a crucial role in generating high-affinity antibody-producing B cells during the germinal center (GC) reaction. Herein, we analysed the altered gene expression profile of a mouse FDC line, FL-Y, following lymphotoxin ß receptor stimulation, and observed increased Slam-family member 8 (Slamf8) mRNA expression. Forced Slamf8 expression and SLAMF8-Fc addition enhanced the ability of FL-Y cells to induce FDC-induced monocytic cell (FDMC) differentiation. FDMCs accelerated GC-phenotype proliferation in cultured B cells, suggesting that they are capable of promoting GC responses. Furthermore, a pulldown assay showed that SLAMF8-Fc could bind to SLAMF8-His. Overall, the homophilic interaction of SLAMF8 promotes FDMC differentiation and SLAMF8 might act as a novel regulator of GC responses by regulating FDMC differentiation.


Asunto(s)
Células Dendríticas Foliculares , Receptor beta de Linfotoxina , Ratones , Animales , Células Dendríticas Foliculares/metabolismo , Receptor beta de Linfotoxina/metabolismo , Centro Germinal/metabolismo , Linfocitos B/metabolismo , Diferenciación Celular/genética , ARN Mensajero/metabolismo , Células Dendríticas
18.
Genes (Basel) ; 13(2)2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35205329

RESUMEN

The role of Dickkopf-3 (Dkk3)/REIC (The Reduced Expression in Immortalized Cells), a Wnt-signaling inhibitor, in male reproductive physiology remains unknown thus far. To explore the functional details of Dkk3/REIC in the male reproductive process, we studied the Dkk3/REIC knock-out (KO) mouse model. By examining testicular sections and investigating the sperm characteristics (count, vitality and motility) and ultrastructure, we compared the reproductive features between Dkk3/REIC-KO and wild-type (WT) male mice. To further explore the underlying molecular mechanism, we performed RNA sequencing (RNA-seq) analysis of testicular tissues. Our results showed that spermiation failure existed in seminiferous tubules of Dkk3/REIC-KO mice, and sperm from Dkk3/REIC-KO mice exhibited inferior motility (44.09 ± 8.12% vs. 23.26 ± 10.02%, p < 0.01). The Ultrastructure examination revealed defects in the sperm fibrous sheath of KO mice. Although the average count of Dkk3/REIC-KO epididymal sperm was less than that of the wild-types (9.30 ± 0.69 vs. 8.27 ± 0.87, ×106), neither the gap (p > 0.05) nor the difference in the sperm vitality rate (72.83 ± 1.55% vs. 72.50 ± 0.71%, p > 0.05) were statistically significant. The RNA-seq and GO (Gene Oncology) enrichment results indicated that the differential genes were significantly enriched in the GO terms of cytoskeleton function, cAMP signaling and calcium ion binding. Collectively, our research demonstrates that Dkk3/REIC is involved in the process of spermiation, fibrous sheath integrity maintenance and sperm motility of mice.


Asunto(s)
Motilidad Espermática , Espermatozoides , Animales , Masculino , Ratones , Ratones Noqueados , Motilidad Espermática/genética , Testículo , Vía de Señalización Wnt/genética
19.
J Biochem ; 170(3): 435-443, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34247245

RESUMEN

Transient expression of human intracellular proteins in human embryonic kidney (HEK) 293 cells is a reliable system for obtaining soluble proteins with biologically active conformations. Contrary to conventional concepts, we found that recombinantly expressed intracellular cancer-testis antigens (CTAs) showed frequent aggregation in HEK293 cells. Although experimental subcellular localization of recombinant CTAs displayed proper cytosolic or nuclear localization, some proteins showed aggregated particles in the cell. This aggregative property was not observed in recombinant housekeeping proteins. No significant correlation was found between the aggregative and biophysical properties, such as hydrophobicity, contents of intrinsically disordered regions and expression levels, of CTAs. These results can be explained in terms of structural instability of CTAs, which are specifically expressed in the testis and aberrantly expressed in cancer cells and function as a hub in the protein-protein network using intrinsically disordered regions. Hence, we speculate that recombinantly expressed CTAs failed to form this protein complex. Thus, unfolded CTAs formed aggregated particles in the cell.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Testículo/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Células HEK293 , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Ratones , Agregado de Proteínas , Transporte de Proteínas , Proteínas Recombinantes/metabolismo , Testículo/inmunología
20.
Cancers (Basel) ; 14(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35008270

RESUMEN

To develop combination immunotherapies for gastric cancers, immunologically well-characterized preclinical models are crucial. Here, we leveraged two transplantable murine gastric cancer cell lines, YTN2 and YTN16, derived from the same parental line but differing in their susceptibility to immune rejection. We established their differential sensitivity to immune checkpoint inhibitors (ICI) and identified neoantigens. Although anti-CTLA-4 mAbs eradicated YTN16 tumors in 4 of 5 mice, anti-PD-1 and anti-PD-L1 mAbs failed to eradicate YTN16 tumors. Using whole-exome and RNA sequencing, we identified two and three neoantigens in YTN2 and YTN16, respectively. MHC class I ligandome analysis detected the expression of only one of these neoantigens, mutated Cdt1, but the exact length of MHC binding peptide was determined. Dendritic cell vaccine loaded with neoepitope peptides and adoptive transfer of neoantigen-specific CD8+ T cells successfully inhibited the YTN16 tumor growth. Targeting mutated Cdt1 had better efficacy for controlling the tumor. Therefore, mutated Cdt1 was the dominant neoantigen in these tumor cells. More mCdt1 peptides were bound to MHC class I and presented on YTN2 surface than YTN16. This might be one of the reasons why YTN2 was rejected while YTN16 grew in immune-competent mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA