Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36293282

RESUMEN

Transmembrane glycoprotein integrins play crucial roles in biochemical processes, and by their inhibition or activation, different signal pathways can be disrupted, leading to abnormal physiological functions. We have previously demonstrated the inhibitory effect of glyphosate herbicide's active ingredient on cell adhesion and its αvß3 integrin antagonist effect. Therefore, it appeared particularly exciting to investigate inhibition of glyphosate and its metabolites on a wider range of Arg-Gly-Asp (RGD) binding integrins, namely αvß3, α5ß1 and αllbß3. Thus, the purpose of this study was to assess how extended the inhibitory effect observed for glyphosate on the integrin αvß3 is in terms of other RGD integrins and other structurally or metabolically related derivatives of glyphosate. Five different experimental setups using enzyme-linked immunosorbent assays were applied: (i) αvß3 binding to a synthetic polymer containing RGD; (ii) αvß3 binding to its extracellular matrix (ECM) protein, vitronectin; (iii) α5ß1 binding to the above polymer containing RGD; (iv) αllbß3 binding to its ECM protein, fibrinogen and (v) αvß3 binding to the SARS-CoV-2 spike protein receptor binding domain. Total inhibition of αvß3 binding to RGD was detected for glyphosate and its main metabolite, aminomethylphosphonic acid (AMPA), as well as for acetylglycine on α5ß1 binding to RGD.


Asunto(s)
COVID-19 , Herbicidas , Humanos , Integrina alfaVbeta3/metabolismo , Vitronectina , Herbicidas/farmacología , SARS-CoV-2 , Oligopéptidos/química , Ensayo de Inmunoadsorción Enzimática , Fibrinógeno , Polímeros
2.
Molecules ; 27(19)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36235051

RESUMEN

An enzyme-linked fluorescent immunoassay (ELFIA) method has been developed for the quantitative analytical determination of the herbicide active ingredient glyphosate in environmental matrices (surface water, soil, and plant tissues). Glyphosate, as a ubiquitous agricultural pollutant, is a xenobiotic substance with exposure in aquatic and terrestrial ecosystems due its extremely high worldwide application rate. The immunoassay developed in Project Aquafluosense is part of a fluorescence-based instrumentation setup for the in situ determination of several characteristic water quality parameters. The 96-well microplate-based competitive immunoassay method applies fluorescence signal detection in the concentration range of 0-100 ng/mL glyphosate. Application of the fluorescent signal provides a limit of detection of 0.09 ng/mL, which is 2.5-fold lower than that obtained with a visual absorbance signal. Beside the improved limit of detection, determination by fluorescence provided a wider and steeper dynamic range for glyphosate detection. No matrix effect appeared for the undiluted surface water samples, while plant tissues and soil samples required dilution rates of 1:10 and 1:100, respectively. No cross-reaction was determined with the main metabolite of glyphosate, N-aminomethylphosphonic acid, and related compounds.


Asunto(s)
Contaminantes Ambientales , Herbicidas , Ecosistema , Técnica del Anticuerpo Fluorescente , Glicina/análogos & derivados , Herbicidas/análisis , Suelo , Xenobióticos , Glifosato
3.
Toxins (Basel) ; 13(2)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33504112

RESUMEN

A planar waveguide (PW) immunosensor working as a polarisation interferometer was developed for the detection of mycotoxin zearalenone (ZON). The main element of the sensor is an optical waveguide consisting of a thin silicon nitride layer between two thicker silicon dioxide layers. A combination of a narrow waveguiding core made by photolithography with an advanced optical set-up providing a coupling of circular polarised light into the PW via its slanted edge allowed the realization of a novel sensing principle by detection of the phase shift between the p- and s-components of polarised light propagating through the PW. As the p-component is sensitive to refractive index changes at the waveguide interface, molecular events between the sensor surface and the contacting sample solution can be detected. To detect ZON concentrations in the sample solution, ZON-specific antibodies were immobilised on the waveguide via an electrostatically deposited polyelectrolyte layer, and protein A was adsorbed on it. Refractive index changes on the surface due to the binding of ZON molecules to the anchored antibodies were detected in a concentration-dependent manner up to 1000 ng/mL of ZON, allowing a limit of detection of 0.01 ng/mL. Structurally unrelated mycotoxins such as aflatoxin B1 or ochratoxin A did not exert observable cross-reactivity.


Asunto(s)
Anticuerpos/inmunología , Técnicas Biosensibles , Fusarium/metabolismo , Inmunoensayo , Interferometría , Zearalenona/análisis , Especificidad de Anticuerpos , Límite de Detección , Reproducibilidad de los Resultados , Zearalenona/inmunología
4.
Toxins (Basel) ; 13(3)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801263

RESUMEN

Project Aquafluosense is designed to develop prototypes for a fluorescence-based instrumentation setup for in situ measurements of several characteristic parameters of water quality. In the scope of the project an enzyme-linked fluorescent immunoassay (ELFIA) method has been developed for the detection of several environmental xenobiotics, including mycotoxin zearalenone (ZON). ZON, produced by several plant pathogenic Fusarium species, has recently been identified as an emerging pollutant in surface water, presenting a hazard to aquatic ecosystems. Due to its physico-chemical properties, detection of ZON at low concentrations in surface water is a challenging task. The 96-well microplate-based fluorescence instrument is capable of detecting ZON in the concentration range of 0.09-400 ng/mL. The sensitivity and accuracy of the analytical method has been demonstrated by a comparative assessment with detection by high-performance liquid chromatography and by total internal reflection ellipsometry. The limit of detection of the method, 0.09 ng/mL, falls in the low range compared to the other reported immunoassays, but the main advantage of this ELFIA method is its efficacy in combined in situ applications for determination of various important water quality parameters detectable by induced fluorimerty-e.g., total organic carbon content, algal density or the level of other organic micropollutants detectable by immunofluorimetry. In addition, the immunofluorescence module can readily be expanded to other target analytes if proper antibodies are available for detection.


Asunto(s)
Monitoreo del Ambiente , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Fusarium/metabolismo , Microbiología del Agua , Zearalenona/análisis , Límite de Detección , Reproducibilidad de los Resultados , Espectrometría de Fluorescencia , Calidad del Agua
5.
Sci Rep ; 8(1): 17401, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30479368

RESUMEN

This study is a discovery of interesting and far reaching properties of the world leading herbicide active ingredient glyphosate. Here we demonstrate the cell adhesion-modifying characteristics of glyphosate affecting cellular interactions via Arg-Gly-Asp (RGD)-dependent integrins. This conclusion was supported by the observations that a glyphosate surface coating induced integrin-specific cell adhesion, while glyphosate in solution inhibited cell adhesion on an RGD-displaying surface. A sensitive, real-time, label-free, whole cell approach was used to monitor the cell adhesion kinetic processes with excellent data quality. The half maximal inhibitory concentration (IC50) for glyphosate was determined to be 0.47 ± 0.07% (20.6 mM) in serum-free conditions. A three-dimensional dissociation constant of 0.352 mM was calculated for the binding between RGD-specific integrins in intact MC3T3-E1 cells and soluble glyphosate by measuring its competition for RGD-motifs binding, while the affinity of those RGD-specific integrins to the RGD-motifs was 5.97 µM. The integrin-targeted affinity of glyphosate was proven using competitive binding assays to recombinant receptor αvß3. The present study shows not only ligand-binding properties of glyphosate, but also illustrates its remarkable biomimetic power in the case of cell adhesion.


Asunto(s)
Materiales Biomiméticos/farmacología , Técnicas Biosensibles/métodos , Adhesión Celular , Glicina/análogos & derivados , Integrinas/metabolismo , Osteoblastos/efectos de los fármacos , Animales , Línea Celular , Glicina/farmacología , Integrinas/química , Ratones , Oligopéptidos/química , Oligopéptidos/metabolismo , Osteoblastos/metabolismo , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA