Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Child Psychol Psychiatry ; 62(9): 1120-1131, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33641216

RESUMEN

BACKGROUND: This study is part of a larger research program focused on developing objective, scalable tools for digital behavioral phenotyping. We evaluated whether a digital app delivered on a smartphone or tablet using computer vision analysis (CVA) can elicit and accurately measure one of the most common early autism symptoms, namely failure to respond to a name call. METHODS: During a pediatric primary care well-child visit, 910 toddlers, 17-37 months old, were administered an app on an iPhone or iPad consisting of brief movies during which the child's name was called three times by an examiner standing behind them. Thirty-seven toddlers were subsequently diagnosed with autism spectrum disorder (ASD). Name calls and children's behavior were recorded by the camera embedded in the device, and children's head turns were coded by both CVA and a human. RESULTS: CVA coding of response to name was found to be comparable to human coding. Based on CVA, children with ASD responded to their name significantly less frequently than children without ASD. CVA also revealed that children with ASD who did orient to their name exhibited a longer latency before turning their head. Combining information about both the frequency and the delay in response to name improved the ability to distinguish toddlers with and without ASD. CONCLUSIONS: A digital app delivered on an iPhone or iPad in real-world settings using computer vision analysis to quantify behavior can reliably detect a key early autism symptom-failure to respond to name. Moreover, the higher resolution offered by CVA identified a delay in head turn in toddlers with ASD who did respond to their name. Digital phenotyping is a promising methodology for early assessment of ASD symptoms.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno del Espectro Autista/diagnóstico , Trastorno Autístico/diagnóstico , Niño , Preescolar , Humanos , Lactante
2.
N C Med J ; 74(1): 90-4, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23530395

RESUMEN

A series of severe child abuse cases in the state, all involving children who were reportedly homeschooled, are cause for concern. We review 4 such cases and the regulations regarding homeschooling in the state of North Carolina, exploring potential deficits in the system and suggesting ways of addressing them.


Asunto(s)
Maltrato a los Niños/diagnóstico , Maltrato a los Niños/estadística & datos numéricos , Niño , Personal de Salud , Política de Salud , Humanos , North Carolina/epidemiología
4.
J Pediatr Health Care ; 28(4): e35-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24200295

RESUMEN

Human papillomavirus (HPV) is the most frequently diagnosed sexually transmitted infection in the United States. It is associated with the development of cervical, anal-genital, and oral-pharyngeal cancers. The rate of HPV infection among adolescents and young adults in the United States remains high, and completion rates of an HPV vaccine series remain low. At an urban pediatric clinic, adolescent and young adult participants aged 11 to 22 years (n = 37) received text message reminders for their second and third dose of HPV vaccine over an 8-month study period. Of the participants receiving text message reminders, 14% completed the vaccine series at the optimal time, whereas 0% of an interested group (n = 43) and only 3% of a standard care group (n = 232) completed the vaccine series at the optimal time. Findings support the use of text message reminders to improve HPV vaccine series completion rates in a pediatric practice.


Asunto(s)
Alphapapillomavirus/inmunología , Vacunas contra Papillomavirus/administración & dosificación , Sistemas Recordatorios , Envío de Mensajes de Texto , Adolescente , Adulto , Niño , Femenino , Vacuna Tetravalente Recombinante contra el Virus del Papiloma Humano Tipos 6, 11 , 16, 18 , Humanos , North Carolina , Adulto Joven
5.
Pediatrics ; 118(3): e570-8, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16950948

RESUMEN

OBJECTIVES: Immunoprophylaxis with influenza vaccine is the primary method for reducing the effect of influenza on children, and inactivated influenza vaccine has been shown to be safe and effective in children. The Advisory Committee on Immunization Practices recommends that children 6 to 23 months of age who are receiving trivalent inactivated influenza vaccine for the first time be given 2 doses; however, delivering 2 doses of trivalent inactivated influenza vaccine > or = 4 weeks apart each fall can be logistically challenging. We evaluated an alternate spring dosing schedule to assess whether a spring dose of trivalent inactivated influenza vaccine was capable of "priming" the immune response to a fall dose of trivalent inactivated influenza vaccine containing 2 different antigens. PATIENTS AND METHODS: Healthy children born between November 1, 2002, and December 31, 2003, were recruited in the spring and randomly assigned to either the alternate spring schedule or standard fall schedule. The 2003-2004 licensed trivalent inactivated influenza vaccine was administered in the spring; the fall 2004-2005 vaccine had the same A/H1N1 antigen but contained drifted A/H3N2 antigen and B antigen with a major change in strain lineage. Reactogenicity was assessed by parental diaries and telephone surveillance. Blood was obtained after the second dose of trivalent inactivated influenza vaccine for all of the children and after the first dose of trivalent inactivated influenza vaccine in the fall group. The primary outcome of this study was to demonstrate noninferiority of the antibody response after a spring-fall dosing schedule compared with the standard fall dosing schedule. Noninferiority was based on the proportion of subjects in each group achieving a hemagglutination-inhibition antibody titer of > or = 1:32 after vaccination to 2 of the 3 antigens (H1N2, H3N2, and B) contained in the 2004-2005 vaccine. For each antigen, the antibody response was proposed to be noninferior if, within the upper bound of 95% confidence interval, there was < 15% difference between the proportion of children in the fall and spring groups with postvaccination titers > or = 1:32. RESULTS: A total of 468 children were randomly assigned to either the spring (n = 233) or fall (n = 235) trivalent inactivated influenza vaccine schedule. Excellent response rates to A/H1N1, as measured by antibody levels > or = 1:32, were noted in both the spring (86%) and fall groups (93%). The A/H1N1 response rate of the spring group was noninferior to that of the fall group. Noninferiority of the spring schedule was not met with respect to the other 2 influenza antigens: for A/H3N2 the response was 70% in the spring group versus 83% for the fall group, and the response to B was 39% in the spring group versus 88% for the fall group. After 2 doses of vaccine, the geometric mean antibody titers also were less robust in the spring group for both A/H3N2 and B antigens. For each of the 3 vaccine antigens, the respective geometric mean antibody titers for the spring group versus the fall group were: A/H1N1, 79.5 +/- 3.3 and 91.9 +/- 2.6; A/H3N2, 57.1 +/- 4.1 and 77.8 +/- 3.7; and B, 18.0 +/- 2.4 and 61.6 +/- 2.5. However, a significantly higher proportion of children in the spring group achieved potentially protective levels of antibody to all 3 antigens after their first fall dose of trivalent inactivated influenza vaccine than children in the fall group after receiving their first fall dose. For influenza A/H1N1, there was an antibody level > or = 1:32 in 86% of children in the spring group versus 55% of children in the fall group. Likewise, for influenza A/H3N2, 70% of children in the spring group and 47% of children in the fall group had antibody levels > 1:32; for influenza B, the proportions were 39% of children in the spring group and 16% of children in the fall group. Reactogenicity after trivalent inactivated influenza vaccine in both groups of children was minimal and did not differ by dose. CONCLUSIONS: Although the immune response to the identical A/H1N1 vaccine antigen was similar in both groups, priming with different A/H3N2 antigens and B antigens in the spring produced a lower immune response to both antigens than that shown in children who received 2 doses of the same vaccine in the fall. However, approximately 70% of children in the spring group had a protective response to the H3N2 antigen after 2 doses. Initiating influenza immunization in the spring was superior to 1 dose of trivalent inactivated influenza vaccine in the fall. The goal of delivering 2 doses of influenza vaccine a month apart to vaccine-naive children within the narrow flu vaccination season is a challenge not yet met; thus far, only about half of children aged 6 to 23 months of age are receiving influenza vaccine. By using the spring schedule, we were able to administer 2 doses of trivalent inactivated influenza vaccine to a higher proportion of children earlier in the influenza vaccination season. In years when there is an ample supply of trivalent inactivated influenza vaccine, and vaccine remains at the end of the season, priming influenza vaccine-naive infants with a spring dose will lead to the earlier protection of a higher proportion of infants in the fall. This strategy may be particularly advantageous when there is an early start to an influenza season as occurred in the fall of 2003. A priming dose of influenza vaccine in the spring may also offer other advantages. Many vaccine-naive children may miss the second dose of fall trivalent inactivated influenza vaccine because of vaccine shortages or for other reasons, such as the potential implementation of new antigens at a late date. Even with seasonal changes in influenza vaccine antigens, by giving a springtime dose of trivalent inactivated influenza vaccine, such children would be more protected against influenza than would children who were only able to receive 1 dose in the fall. In summary, our data suggest that identical influenza antigens are not necessary for priming vaccine-naive children and that innovative uses of influenza vaccine, such as a springtime dose of vaccine, could assist in earlier and more complete immunization of young children.


Asunto(s)
Formación de Anticuerpos , Antígenos Virales/inmunología , Esquemas de Inmunización , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Femenino , Humanos , Lactante , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza B/inmunología , Gripe Humana/prevención & control , Masculino , Estudios Prospectivos , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA