Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Physiol ; 595(4): 1239-1251, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27767209

RESUMEN

KEY POINTS: We establish experimental preparations for optogenetic investigation of glutamatergic input to the inferior olive. Neurones in the principal olivary nucleus receive monosynaptic extra-somatic glutamatergic input from the neocortex. Glutamatergic inputs to neurones in the inferior olive generate bidirectional postsynaptic potentials (PSPs), with a fast excitatory component followed by a slower inhibitory component. Small conductance calcium-activated potassium (SK) channels are required for the slow inhibitory component of glutamatergic PSPs and oppose temporal summation of inputs at intervals ≤ 20 ms. Active integration of synaptic input within the inferior olive may play a central role in control of olivo-cerebellar climbing fibre signals. ABSTRACT: The inferior olive plays a critical role in motor coordination and learning by integrating diverse afferent signals to generate climbing fibre inputs to the cerebellar cortex. While it is well established that climbing fibre signals are important for motor coordination, the mechanisms by which neurones in the inferior olive integrate synaptic inputs and the roles of particular ion channels are unclear. Here, we test the hypothesis that neurones in the inferior olive actively integrate glutamatergic synaptic inputs. We demonstrate that optogenetically activated long-range synaptic inputs to the inferior olive, including projections from the motor cortex, generate rapid excitatory potentials followed by slower inhibitory potentials. Synaptic projections from the motor cortex preferentially target the principal olivary nucleus. We show that inhibitory and excitatory components of the bidirectional synaptic potentials are dependent upon AMPA (GluA) receptors, are GABAA independent, and originate from the same presynaptic axons. Consistent with models that predict active integration of synaptic inputs by inferior olive neurones, we find that the inhibitory component is reduced by blocking large conductance calcium-activated potassium channels with iberiotoxin, and is abolished by blocking small conductance calcium-activated potassium channels with apamin. Summation of excitatory components of synaptic responses to inputs at intervals ≤ 20 ms is increased by apamin, suggesting a role for the inhibitory component of glutamatergic responses in temporal integration. Our results indicate that neurones in the inferior olive implement novel rules for synaptic integration and suggest new principles for the contribution of inferior olive neurones to coordinated motor behaviours.


Asunto(s)
Núcleo Olivar/metabolismo , Receptores AMPA/metabolismo , Potenciales Sinápticos , Animales , Apamina/farmacología , Ácido Glutámico/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Ratones , Ratones Endogámicos C57BL , Corteza Motora/citología , Corteza Motora/metabolismo , Corteza Motora/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Núcleo Olivar/citología , Núcleo Olivar/fisiología , Péptidos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Sinapsis/metabolismo , Sinapsis/fisiología
2.
J Neurosci ; 34(50): 16739-43, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25505326

RESUMEN

The medial septum (MS) is required for theta rhythmic oscillations and grid cell firing in the medial entorhinal cortex (MEC). While GABAergic, glutamatergic, and cholinergic neurons project from the MS to the MEC, their synaptic targets are unknown. To investigate whether MS neurons innervate specific layers and cell types in the MEC, we expressed channelrhodopsin-2 in mouse MS neurons and used patch-clamp recording in brain slices to determine the response to light activation of identified cells in the MEC. Following activation of MS axons, we observed fast monosynaptic GABAergic IPSPs in the majority (>60%) of fast-spiking (FS) and low-threshold-spiking (LTS) interneurons in all layers of the MEC, but in only 1.5% of nonstellate principal cells (NSPCs) and in no stellate cells. We also observed fast glutamatergic responses to MS activation in a minority (<5%) of NSPCs, FS, and LTS interneurons. During stimulation of MS inputs at theta frequency (10 Hz), the amplitude of GABAergic IPSPs was maintained, and spike output from LTS and FS interneurons was entrained at low (25-60 Hz) and high (60-180 Hz) gamma frequencies, respectively. By demonstrating cell type-specific targeting of the GABAergic projection from the MS to the MEC, our results support the idea that the MS controls theta frequency activity in the MEC through coordination of inhibitory circuits.


Asunto(s)
Corteza Entorrinal/fisiología , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Inhibición Neural/fisiología , Núcleos Septales/fisiología , Animales , Corteza Entorrinal/citología , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Núcleos Septales/citología
3.
J Physiol ; 591(22): 5691-709, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24000178

RESUMEN

Neural computations rely on ion channels that modify neuronal responses to synaptic inputs. While single cell recordings suggest diverse and neurone type-specific computational functions for HCN1 channels, their behavioural roles in any single neurone type are not clear. Using a battery of behavioural assays, including analysis of motor learning in vestibulo-ocular reflex and rotarod tests, we find that deletion of HCN1 channels from cerebellar Purkinje cells selectively impairs late stages of motor learning. Because deletion of HCN1 modifies only a subset of behaviours involving Purkinje cells, we asked whether the channel also has functional specificity at a cellular level. We find that HCN1 channels in cerebellar Purkinje cells reduce the duration of inhibitory synaptic responses but, in the absence of membrane hyperpolarization, do not affect responses to excitatory inputs. Our results indicate that manipulation of subthreshold computation in a single neurone type causes specific modifications to behaviour.


Asunto(s)
Cerebelo/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Aprendizaje/fisiología , Canales de Potasio/metabolismo , Células de Purkinje/fisiología , Sinapsis/metabolismo , Potenciales de Acción/fisiología , Animales , Cerebelo/metabolismo , Ratones , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Células de Purkinje/metabolismo , Reflejo Vestibuloocular/fisiología
4.
Elife ; 112022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36562467

RESUMEN

Standard models for spatial and episodic memory suggest that the lateral entorhinal cortex (LEC) and medial entorhinal cortex (MEC) send parallel independent inputs to the hippocampus, each carrying different types of information. Here, we evaluate the possibility that information is integrated between divisions of the entorhinal cortex prior to reaching the hippocampus. We demonstrate that, in mice, fan cells in layer 2 (L2) of LEC that receive neocortical inputs, and that project to the hippocampal dentate gyrus, also send axon collaterals to layer 1 (L1) of the MEC. Activation of inputs from fan cells evokes monosynaptic glutamatergic excitation of stellate and pyramidal cells in L2 of the MEC, typically followed by inhibition that contains fast and slow components mediated by GABAA and GABAB receptors, respectively. Inputs from fan cells also directly activate interneurons in L1 and L2 of MEC, with synaptic connections from L1 interneurons accounting for slow feedforward inhibition of L2 principal cell populations. The relative strength of excitation and inhibition following fan cell activation differs substantially between neurons and is largely independent of anatomical location. Our results demonstrate that the LEC, in addition to directly influencing the hippocampus, can activate or inhibit major hippocampal inputs arising from the MEC. Thus, local circuits in the superficial MEC may combine spatial information with sensory and higher order signals from the LEC, providing a substrate for integration of 'what' and 'where' components of episodic memories.


Asunto(s)
Corteza Entorrinal , Hipocampo , Ratones , Animales , Corteza Entorrinal/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Giro Parahipocampal , Ácido gamma-Aminobutírico
5.
Brain ; 132(Pt 7): 1847-57, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19403787

RESUMEN

Recent, convergent evidence places the anterior thalamic nuclei at the heart of diencephalic amnesia. However, the reasons for the severe memory loss in diencephalic amnesia remain unknown. A potential clue comes from the dense, reciprocal connections between the anterior thalamic nuclei and retrosplenial cortex, another region vital for memory. We now report a loss of synaptic plasticity [long-term depression (LTD)] in rat retrosplenial cortex slices months following an anterior thalamic lesion. The loss of LTD was lamina-specific, occurring only in superficial layers of the cortex and was associated with a decrease in GABA(A)-mediated inhibitory transmission. As retrosplenial cortex is itself vital for memory, this distal lesion effect will amplify the impact of anterior thalamic lesions. These findings not only provide novel insights into the functional pathology of diencephalic amnesia and have implications for the aetiology of the posterior cingulate hypoactivity in Alzheimer's disease, but also show how distal changes in plasticity could contribute to diaschisis.


Asunto(s)
Amnesia/patología , Núcleos Talámicos Anteriores/patología , Giro del Cíngulo/patología , Plasticidad Neuronal , Sinapsis/fisiología , Amnesia/metabolismo , Amnesia/fisiopatología , Animales , Núcleos Talámicos Anteriores/metabolismo , Núcleos Talámicos Anteriores/fisiopatología , Giro del Cíngulo/fisiopatología , Masculino , N-Metilaspartato/metabolismo , Técnicas de Placa-Clamp , Ratas , Receptores de N-Metil-D-Aspartato/fisiología , Transmisión Sináptica/fisiología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , Ácido gamma-Aminobutírico/metabolismo
6.
Elife ; 92020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32039761

RESUMEN

Distinctions between cell types underpin organizational principles for nervous system function. Functional variation also exists between neurons of the same type. This is exemplified by correspondence between grid cell spatial scales and the synaptic integrative properties of stellate cells (SCs) in the medial entorhinal cortex. However, we know little about how functional variability is structured either within or between individuals. Using ex-vivo patch-clamp recordings from up to 55 SCs per mouse, we found that integrative properties vary between mice and, in contrast to the modularity of grid cell spatial scales, have a continuous dorsoventral organization. Our results constrain mechanisms for modular grid firing and provide evidence for inter-animal phenotypic variability among neurons of the same type. We suggest that neuron type properties are tuned to circuit-level set points that vary within and between animals.


The brain consists of many types of cells that are specialised to perform different tasks. This is similar to how different groups of people will have different responsibilities in a large company. But within each group with the same role, individual employees will also do their jobs in different ways. Does the same apply to the brain? In other words, do individual neurons of the same type ­ with the same role ­ process information differently? To find out, Pastoll et al. studied stellate cells in the mouse brain: these neurons take their name from their distinctive star-shaped arrays of projections, and they work together in groups known as modules to help animals navigate their environment. To determine whether stellate cells differ between mice, and how they might differ within a single animal, Pastoll et al. measured the activity of more than 800 stellate cells in more than two dozen individuals. The results revealed that stellate cells process the same information differently between mice, which may contribute to variations in behaviour across the species. But even within an individual, stellate cells also showed differences in information processing. In fact, the properties of the stellate cells within each mouse varied along a continuum. This discovery rules out several previous theories on how stellate cells form the modules that support navigation. The work by Pastoll et al. helps to understand how the brain supports thinking and memory. In the long term, these findings could also have implications for treating brain disorders, as they suggest that variations between people in the properties of their neurons could lead to variations in drug response. Researchers may need to take inter-individual differences into account when planning experiments, and ultimately when designing drugs.


Asunto(s)
Corteza Entorrinal , Neuronas/citología , Potenciales de Acción/fisiología , Animales , Células Cultivadas , Electrofisiología , Corteza Entorrinal/citología , Corteza Entorrinal/fisiología , Femenino , Células de Red/citología , Masculino , Ratones , Técnicas de Placa-Clamp , Fenotipo
7.
Curr Biol ; 30(1): 169-175.e5, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31839450

RESUMEN

Episodic memory requires different types of information to be bound together to generate representations of experiences. The lateral entorhinal cortex (LEC) and hippocampus are required for episodic-like memory in rodents [1, 2]. The LEC is critical for integrating spatial and contextual information about objects [2-6]. Further, LEC neurons encode objects in the environment and the locations where objects were previously experienced and generate representations of time during the encoding and retrieval of episodes [7-12]. However, it remains unclear how specific populations of cells within the LEC contribute to the integration of episodic memory components. Layer 2 (L2) of LEC manifests early pathology in Alzheimer's disease (AD) and related animal models [13-16]. Projections to the hippocampus from L2 of LEC arise from fan cells in a superficial sub-layer (L2a) that are immunoreactive for reelin and project to the dentate gyrus [17, 18]. Here, we establish an approach for selectively targeting fan cells using Sim1:Cre mice. Whereas complete lesions of the LEC were previously found to abolish associative recognition memory [2, 3], we report that, after selective suppression of synaptic output from fan cells, mice can discriminate novel object-context configurations but are impaired in recognition of novel object-place-context associations. Our results suggest that memory functions are segregated between distinct LEC networks.


Asunto(s)
Corteza Entorrinal/fisiología , Memoria Episódica , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Masculino , Ratones , Proteínas del Tejido Nervioso/metabolismo , Reconocimiento en Psicología , Proteína Reelina , Serina Endopeptidasas/metabolismo
8.
Cell Rep ; 22(7): 1722-1733, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29444426

RESUMEN

Cerebellar climbing-fiber-mediated complex spikes originate from neurons in the inferior olive (IO), are critical for motor coordination, and are central to theories of cerebellar learning. Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels expressed by IO neurons have been considered as pacemaker currents important for oscillatory and resonant dynamics. Here, we demonstrate that in vitro, network actions of HCN1 channels enable bidirectional glutamatergic synaptic responses, while local actions of HCN1 channels determine the timing and waveform of synaptically driven action potentials. These roles are distinct from, and may complement, proposed pacemaker functions of HCN channels. We find that in behaving animals HCN1 channels reduce variability in the timing of cerebellar complex spikes, which serve as a readout of IO spiking. Our results suggest that spatially distributed actions of HCN1 channels enable the IO to implement network-wide rules for synaptic integration that modulate the timing of cerebellar climbing fiber signals.


Asunto(s)
Potenciales de Acción/fisiología , Cerebelo/citología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Sinapsis/metabolismo , Animales , Canales de Calcio/metabolismo , Uniones Comunicantes/metabolismo , Eliminación de Gen , Ácido Glutámico/metabolismo , Masculino , Ratones Endogámicos C57BL , Movimiento , Neuronas/metabolismo , Factores de Tiempo , Vigilia
9.
Cell Rep ; 22(5): 1313-1324, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29386117

RESUMEN

Spatial learning requires estimates of location that may be obtained by path integration or from positional cues. Grid and other spatial firing patterns of neurons in the superficial medial entorhinal cortex (MEC) suggest roles in behavioral estimation of location. However, distinguishing the contributions of path integration and cue-based signals to spatial behaviors is challenging, and the roles of identified MEC neurons are unclear. We use virtual reality to dissociate linear path integration from other strategies for behavioral estimation of location. We find that mice learn to path integrate using motor-related self-motion signals, with accuracy that decreases steeply as a function of distance. We show that inactivation of stellate cells in superficial MEC impairs spatial learning in virtual reality and in a real world object location recognition task. Our results quantify contributions of path integration to behavior and corroborate key predictions of models in which stellate cells contribute to location estimation.


Asunto(s)
Corteza Entorrinal/fisiología , Neuronas/fisiología , Aprendizaje Espacial/fisiología , Animales , Corteza Entorrinal/citología , Ratones
10.
Neuron ; 88(5): 1040-1053, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26606996

RESUMEN

Deep layers of the medial entorhinal cortex are considered to relay signals from the hippocampus to other brain structures, but pathways for routing of signals to and from the deep layers are not well established. Delineating these pathways is important for a circuit level understanding of spatial cognition and memory. We find that neurons in layers 5a and 5b have distinct molecular identities, defined by the transcription factors Etv1 and Ctip2, and divergent targets, with extensive intratelencephalic projections originating in layer 5a, but not 5b. This segregation of outputs is mirrored by the organization of glutamatergic input from stellate cells in layer 2 and from the hippocampus, with both preferentially targeting layer 5b over 5a. Our results suggest a molecular and anatomical organization of input-output computations in deep layers of the MEC, reveal precise translaminar microcircuitry, and identify molecularly defined pathways for spatial signals to influence computation in deep layers.


Asunto(s)
Corteza Entorrinal/anatomía & histología , Corteza Entorrinal/metabolismo , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Calbindina 1/metabolismo , Toxina del Cólera/metabolismo , Hipocampo/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Parvalbúminas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
12.
Neuron ; 60(5): 875-89, 2008 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-19081381

RESUMEN

Neurons important for cognitive function are often classified by their morphology and integrative properties. However, it is unclear if within a single class of neuron these properties tune synaptic responses to the salient features of the information that each neuron represents. We demonstrate that for stellate neurons in layer II of the medial entorhinal cortex, the waveform of postsynaptic potentials, the time window for detection of coincident inputs, and responsiveness to gamma frequency inputs follow a dorsal-ventral gradient similar to the topographical organization of grid-like spatial firing fields of neurons in this area. We provide evidence that these differences are due to a membrane conductance gradient mediated by HCN and leak potassium channels. These findings suggest key roles for synaptic integration in computations carried out within the medial entorhinal cortex and imply that tuning of neural information processing by membrane ion channels is important for normal cognitive function.


Asunto(s)
Corteza Entorrinal/citología , Corteza Entorrinal/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Compuestos de Bario/farmacología , Mapeo Encefálico , Tamaño de la Célula , Cesio/farmacología , Cloruros/farmacología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/antagonistas & inhibidores , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Técnicas In Vitro , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Ratones , Antagonistas Muscarínicos/farmacología , Neuronas/clasificación , Técnicas de Placa-Clamp , Pirimidinas/farmacología , Quinidina/farmacología
13.
Eur J Neurosci ; 16(3): 437-44, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12193186

RESUMEN

We have investigated properties of GABAergic synaptic transmission in perirhinal cortex evoked by stimulation of temporal and entorhinal cortex sides. GABAA IPSCs were isolated by blockade of glutamatergic transmission in slices of adult perirhinal cortex; IPSC decay was best fitted with two exponentials. Interestingly, temporal IPSCs had a larger slow component of decay (P < 0.05) compared to entorhinal IPSCs. Depression of IPSCs by the GABAB receptor agonist baclofen was greater (P < 0.05) in the temporal input (79 +/- 4% depression) than the entorhinal input (65 +/- 3% depression). Furthermore, baclofen abolished the slow component of IPSC decay in both inputs. Activity-dependent depression of IPSCs at 5 Hz was greater (P < 0.05) in the temporal input [paired pulse ratio (PPR) 0.5 +/- 0.04] compared to that in the entorhinal input (PPR 0.67 +/- 0.02, n = 10). The differences in paired pulse depression between the inputs were removed by the GABAB receptor antagonist CGP55845A. This study demonstrates several differences in GABA transmission between temporal and entorhinal inputs including the differential activation of presynaptic GABAB receptors and differential regulation of inhibitory synaptic transmission. These properties may be important in the control of neuronal activity within perirhinal cortex.


Asunto(s)
Vías Aferentes/metabolismo , Inhibición Neural/fisiología , Giro Parahipocampal/metabolismo , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Vías Aferentes/citología , Vías Aferentes/efectos de los fármacos , Animales , Estimulación Eléctrica , Corteza Entorrinal/citología , Corteza Entorrinal/efectos de los fármacos , Corteza Entorrinal/metabolismo , Agonistas del GABA/farmacología , Antagonistas del GABA/farmacología , Masculino , Inhibición Neural/efectos de los fármacos , Giro Parahipocampal/citología , Giro Parahipocampal/efectos de los fármacos , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Ratas , Ratas Endogámicas , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-B/efectos de los fármacos , Membranas Sinápticas/efectos de los fármacos , Membranas Sinápticas/metabolismo , Transmisión Sináptica/efectos de los fármacos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA