Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nano Lett ; 23(17): 8180-8185, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37642420

RESUMEN

Graphene monolayers have interesting applications in many fields due to their intrinsic physicochemical properties, especially when they can be postmodified with high precision. Herein, we describe the highly site-selective functionalization of freestanding graphene monolayers with platinum (Pt) clusters by bipolar electrochemistry. The deposition of such metal spots leads to catalytically active hybrid two-dimensional (2D) nanomaterials. Their catalytic functionality is illustrated by the spatially controlled decomposition of hydrogen peroxide, inducing motion at the water/air interface due to oxygen bubble evolution. A series of such 2D Janus structures with Pt deposition at predefined positions (corners and edges) is studied with respect to the generation of autonomous motion. The type and speed of motion can be fine-tuned by controlling the deposition time and location of the Pt clusters. These proof-of-principle experiments indicate that this type of hybrid 2D object opens up interesting perspectives in terms of applications, such as environmental detection or remediation.

2.
Angew Chem Int Ed Engl ; : e202408198, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924323

RESUMEN

An electromagnet is a particular device that takes advantage of electrical currents to produce concentrated magnetic fields. The most well-known example is a conventional solenoid, having the form of an elongated coil and creating a strong magnetic field through its center when it is connected to a current source. Spontaneous redox reactions located at opposite ends of an anisotropic Janus swimmer can effectively mimic a standard power source, due to their ability to wirelessly generate a local electric current. Herein, we propose the coupling of thermodynamically spontaneous redox reactions occurring at the extremities of a hybrid Mg/Pt Janus swimmer with a solenoidal geometry to generate significant magnetic fields. These chemically driven electromagnets, spontaneously transform the redox-induced electric current into a magnetic field with a strength in the range of µT, upon contact with an acidic medium. Such on-board magnetization allows them to perform compass-like rotational motion and magnetotactic displacement in the presence of external magnetic field gradients, without the need of using ferromagnetic materials for the swimmer design. The torque force experienced by the swimmer is proportional to the internal redox current, and by varying the composition of the solution, it is possible to fine-tune its angular velocity.

3.
Faraday Discuss ; 247(0): 34-44, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37470179

RESUMEN

Chemistry on-the-fly is an interesting concept, extensively studied in recent years due to its potential use for recognition, quantification and conversion of chemical species in solution. In this context, chemistry on-the-fly for asymmetric synthesis is a promising field of investigation, since it can help to overcome mass transport limitations, present for example in conventional organic electrosynthesis. Herein, the synergy between a magnetic field-enhanced self-electrophoretic propulsion mechanism and enantioselective redox chemistry on-the-fly is proposed as an efficient method to boost stereoselective conversion. We employ Janus swimmers as redox-active elements, exhibiting a well-controlled clockwise or anticlockwise motion with a speed that can be increased by one order of magnitude in the presence of an external magnetic field. While moving, these bifunctional objects convert spontaneously on-the-fly a prochiral molecule into a specific enantiomer with high enantiomeric excess. The magnetic field-enhanced self-mixing of the swimmers, based on the formation of local magnetohydrodynamic vortices, leads to a significant improvement of the reaction yield and the conversion rate.

4.
Angew Chem Int Ed Engl ; 61(40): e202209098, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35939399

RESUMEN

The development of chiral catalysts plays a very important role in various areas of chemical science. Heterogeneous catalysts have the general advantage of allowing a more straightforward separation from the products. One specific case of heterogeneous catalysis is electrocatalysis, being potentially a green chemistry approach. However, a typical drawback is that the redox conversion of molecules occurs only at the electrode/electrolyte interface, and not in the bulk of the electrolyte. The second limitation is that the electrodes have to be physically connected to a power supply to induce the desired reactions. To circumvent these problems, we propose here a complementary approach by replacing macroscopic electrodes with an ensemble of self-propelled redox active microswimmers. They move autonomously in solution while transforming simultaneously a prochiral starting compound into a specific enantiomer with a very high enantiomeric excess, accompanied by a significantly increased production rate of the favorite enantiomer.

5.
J Am Chem Soc ; 143(32): 12708-12714, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34343427

RESUMEN

Autonomous swimmers have been intensively studied in recent years due to their numerous potential applications in many areas ranging from biomedicine to environmental remediation. Their motion is based either on different self-propulsion mechanisms or on the use of various external stimuli. Herein, the synergy between the ion flux around self-electrophoretic Mg/Pt Janus swimmers and an external magnetic field is proposed as an efficient alternative mechanism to power swimmers on the basis of the resulting Lorentz force. A strong magnetohydrodynamic effect is observed due to the orthogonal combination of magnetic field and spontaneous ionic currents, leading to an increase of the swimmer speed by up to 2 orders of magnitude. Furthermore, the trajectory of the self-propelled swimmers can be controlled by the orientation of the magnetic field, due to the presence of an additional torque force caused by a horizontal cation flux along the swimmer edges, resulting in predictable clockwise or anticlockwise motion. In addition, this effect is independent of the swimmer size, since a similar type of rotational motion is observed for macro- and microscale objects.

6.
Chemphyschem ; 22(13): 1321-1325, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33939868

RESUMEN

Numerous artificial micro- and nanomotors, as well as various swimmers have been inspired by living organisms that are able to move in a coordinated manner. Their cooperation has also gained a lot of attention because the resulting clusters are able to adapt to changes in their environment and to perform complex tasks. However, mimicking such a collective behavior remains a challenge. In the present work, magnesium microparticles are used as chemotactic swimmers with pronounced collective features, allowing the gradual formation of macroscopic agglomerates. The formed clusters act like a single swimmer able to follow pH gradients. This dynamic behavior can be used to spot localized corrosion events in a straightforward way. The autonomous docking of the swimmers to the corrosion site leads to the formation of a local protection layer, thus increasing corrosion resistance and triggering partial self-healing.


Asunto(s)
Hierro/química , Magnesio/química , Movimiento , Corrosión , Concentración de Iones de Hidrógeno , Hidróxido de Magnesio/química , Oxidación-Reducción
7.
Opt Express ; 28(20): 28740-28749, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33114785

RESUMEN

Improving the sensitivity of plasmonic optical fiber sensors constitutes a major challenge as it could significantly enhance their sensing capabilities for the label-free detection of biomolecular interactions or chemical compounds. While many efforts focus on developing more sensitive structures, we present here how the sensitivity of a sensor can be significantly enhanced by improving the light analysis. Contrary to the common approach where the global intensity of the light coming from the core is averaged, our approach is based on the full analysis of the retro-reflected intensity distribution that evolves with the refractive index of the medium being analyzed. Thanks to this original and simple approach, the refractive index sensitivity of a plasmonic optical fiber sensor used in reflection mode was enhanced by a factor of 25 compared to the standard method. The reported approach opens exciting perspectives for improving the remote detection as well as for developing new sensing strategies.

8.
Phys Chem Chem Phys ; 22(39): 22180-22184, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32744277

RESUMEN

Separation of electric charges is the most crucial phenomenon in natural photosynthesis, and is also extremely important for many artificial energy conversion systems based on semiconductors. The usual roadblock in this context is the fast recombination of electrons and holes. Here we demonstrate that the synergy of light and electric fields allows separating very efficiently electric charges over an unusually large distance in TiO2. The generated internal electric field can also be used to shuttle electrons simultaneously to the two opposite sides of a hybrid TiO2-polyaniline object. This counterintuitive behavior is based on the combination of the principles of bipolar electrochemistry and semi-conductor physics.

9.
Sensors (Basel) ; 20(2)2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963277

RESUMEN

The development of sensitive methods for in situ detection of biomarkers is a real challenge to bring medical diagnosis a step forward. The proof-of-concept of a remote multiplexed biomolecular interaction detection through a plasmonic optical fiber bundle is demonstrated here. The strategy relies on a fiber optic biosensor designed from a 300 µm diameter bundle composed of 6000 individual optical fibers. When appropriately etched and metallized, each optical fiber exhibits specific plasmonic properties. The surface plasmon resonance phenomenon occurring at the surface of each fiber enables to measure biomolecular interactions, through the changes of the retro-reflected light intensity due to light/plasmon coupling variations. The functionalization of the microstructured bundle by multiple protein probes was performed using new polymeric 3D-printed microcantilevers. Such soft cantilevers allow for immobilizing the probes in micro spots, without damaging the optical microstructures nor the gold layer. We show here the potential of this device to perform the multiplexed detection of two different antibodies with limits of detection down to a few tenths of nanomoles per liter. This tool, adapted for multiparametric, real-time, and label free monitoring is minimally invasive and could then provide a useful platform for in vivo targeted molecular analysis.


Asunto(s)
Técnicas Biosensibles/métodos , Fibras Ópticas , Resonancia por Plasmón de Superficie/métodos , Animales , Anticuerpos/análisis , Técnicas Biosensibles/instrumentación , Diseño de Equipo , Oro/química , Límite de Detección , Ratas , Resonancia por Plasmón de Superficie/instrumentación , Propiedades de Superficie
10.
Chemphyschem ; 20(7): 941-945, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30840350

RESUMEN

Combining the actuation of conducting polymers with additional functionalities is an interesting fundamental scientific challenge and increases their application potential. Herein we demonstrate the possibility of direct integration of a miniaturized light emitting diode (LED) in a polypyrrole (PPy) matrix in order to achieve simultaneous wireless actuation and light emission. A light emitting diode is used as a part of an electroactive surface on which electrochemical polymerization allows direct incorporation of the electronic device into the polymer. The resulting free-standing polymer/LED hybrid can be addressed by bipolar electrochemistry to trigger simultaneously oxidation and reduction reactions at its opposite extremities, leading to a controlled deformation and an electron flow through the integrated LED. Such a dual response in the form of actuation and light emission opens up interesting perspectives in the field of microrobotics.

11.
Anal Bioanal Chem ; 411(11): 2249-2259, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30798337

RESUMEN

Remote detection by surface plasmon resonance (SPR) is demonstrated through microstructured optical arrays of conical nanotips or micropillars. Both geometries were fabricated by controlled wet chemical etching of bundles comprising several thousands of individual optical fibers. Their surface was coated by a thin gold layer in order to confer SPR properties. The sensitivity and resolution of both shapes were evaluated as a function of global optical index changes in remote detection mode performed by imaging through the etched optical fiber bundle itself. With optimized geometry of micropillar arrays, resolution was increased up to 10-4 refractive index units. The gold-coated micropillar arrays were functionalized with DNA and were able to monitor remotely the kinetics of DNA hybridization with complementary strands. We demonstrate for the first time highly parallel remote SPR detection of DNA via microstructured optical arrays. The obtained SPR sensitivity combined with the remote intrinsic properties of the optical fiber bundles should find promising applications in biosensing, remote SPR imaging, a lab-on-fiber platform dedicated to biomolecular analysis, and in vivo endoscopic diagnosis. Graphical abstract We present a single fabrication step to structure simultaneously all the individual cores of an optical fiber bundle composed of thousands of fibers. The resulting sensor is optimized for reflection mode (compatible with in vivo applications) and is used to perform for the first time highly parallel remote SPR detection of DNA via several thousands of individual optical fiber SPR sensors paving the way for multiplexed biological detection.


Asunto(s)
ADN/análisis , Hibridación de Ácido Nucleico , Fibras Ópticas , Resonancia por Plasmón de Superficie/instrumentación , Diseño de Equipo , Tecnología de Fibra Óptica/instrumentación , Oro/química , Ácidos Nucleicos Inmovilizados/química , Refractometría
12.
Angew Chem Int Ed Engl ; 58(11): 3471-3475, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30552860

RESUMEN

Concepts leading to single enantiomers of chiral molecules are of crucial importance for many applications, including pharmacology and biotechnology. Recently, mesoporous metal phases encoded with chiral information have been developed. Fine-tuning of the enantioaffinity of such structures by imposing an electric potential is proposed, which can influence the electrostatic interactions between the chiral metal and the target enantiomer. This allows the binding affinity between the chiral metal and the target enantiomer to be increased, and thus, the discrimination between two enantiomers to be improved. The concept is illustrated by generating chiral encoded metals in a microfluidic channel by reduction of a platinum salt in the presence of a liquid crystal and l-tryptophan as a chiral model template. After removal of the template molecules, the modified microchannel retains a pronounced chiral character. The chiral recognition efficiency of the microchannel can be fine-tuned by applying a suitable potential to the metal phase. This enables the separation of both components of a racemate flowing through the channel. The approach constitutes a promising and complementary strategy in the frame of chiral discrimination technologies.

13.
Anal Chem ; 90(20): 11770-11774, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30251532

RESUMEN

Highly ordered macroporous electrodes of the conducting polymer poly-3,4- ortho-xylendioxythiophene (PXDOT) are presented as a sensitive analytical tool for heavy metal ion quantification due to a controlled gain in electroactive area. They were designed by using colloidal crystal templates. A direct correlation between the final number of porous layers and the deposition charge ( Qd) employed for electropolymerization is observed. All the electrodes exhibit a surface-templated structure due to an interaction between the radical cation, formed during the electropolymerization, and the surface groups of the silica beads. The voltamperometric response of the macroporous PXDOT electrodes shows a rather fast electron transfer with Δ Ep values between 70 mV and 110 mV. Square wave anodic stripping voltammetric (SWASV) analysis of Cu2+ as a representative heavy metal ion shows a linear response in the subppm range. As a model application, the efficient quantification of Cu2+ in a commercial mezcal sample is validated by the standard addition method and the results correlate adequately with the values obtained by atomic absorption spectroscopy.

14.
Langmuir ; 33(32): 7968-7981, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28718651

RESUMEN

Poly(N-isopropylacrylamide) (pNIPAM) microgels are soft and deformable particles, which can adsorb at liquid interfaces. In the present paper, we study the two-dimensional organization of charged and quasi-neutral microgels with different cross-linking densities, under compression at the air-water interface and the transfer of the microgel monolayer onto a solid substrate at different surface pressures. At low cross-linking densities, the microgels form highly ordered hexagonal lattices on the solid substrate over large areas, with a unique lattice parameter that decreases continuously as the surface pressure increases. We thus prove that the microgel conformation evolves at the air-water interface. The microgels undergo a continuous transition from a highly flattened state at low surface coverage, where the maximal polymer segments are adsorbed at the interface, to entangled flattened microgels, and finally the thickening of the layer up to a dense hydrogel layer of compacted microgels. Moreover, two batches of microgels, with and without charges, are compared. The contribution of electrostatic interactions is assessed via changing the charge density of the microgels or modulating the Debye length. In both cases, electrostatics does not change the lattice parameter, meaning that, despite the microgel different swelling ratio, charges do not affect neither interactions between particles at the interface nor microgels adsorption. Conversely, the cross-linking density has a strong impact on microgel packing at the interface: increasing the cross-linking density strongly decreases the extent of microgel flattening and promotes the occurrence of coexisting hexagonally ordered domains with different lattice parameters.

15.
Angew Chem Int Ed Engl ; 56(38): 11431-11435, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28620938

RESUMEN

Deposition of metals on TiO2 semiconductor particles (M-TiO2 ) results in hybrid Janus objects combining the properties of both materials. One of the techniques proposed to generate Janus particles is bipolar electrochemistry (BPE). The concept can be applied in a straightforward way for the site-selective modification of conducting particles, but is much less obvious to use for semiconductors. Herein we report the bulk synthesis of anisotropic M-TiO2 particles based on the synergy of BPE and photochemistry, allowing the intrinsic limitations, when they are used separately, to be overcome. When applying electric fields during irradiation, electrons and holes can be efficiently separated, thus breaking the symmetry of particles by modifying them selectively and in a wireless way on one side with either gold or platinum. Such hybrid materials are an important first step towards high-performance designer catalyst particles, for example for photosplitting of water.

16.
Analyst ; 141(14): 4299-304, 2016 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-27181757

RESUMEN

In this work, we report an original strategy for the wireless electrochemical generation of light at the tip of an optical fiber bundle, coupled with a simultaneous remote readout. An optical fiber bundle coated with a nanometer-thin gold film acts as a dual platform, on the one hand to locally generate electrochemiluminescence (ECL) in a wireless manner by bipolar electrochemistry, and on the other hand to guide the resulting ECL signal. The light emission is triggered and collected at one end, transmitted by the waveguide and remotely detected at the opposite end. Integration of both functionalities at the level of the same miniaturized object leads to an unprecedented bipolar opto-electrode, allowing one to quantify the ECL intensity as a function of different parameters in a double remote approach with interesting potential applications, ranging from high-throughput catalyst screening to massive parallel biochemical analysis.

17.
Anal Bioanal Chem ; 406(4): 931-41, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23892878

RESUMEN

Microsystems based on microwell arrays have been widely used for studies on single living cells. In this work, we focused on the subcellular level in order to monitor biological responses directly on individual organelles. Consequently, we developed microwell arrays for the entrapment and fluorescence microscopy of single isolated organelles, mitochondria herein. Highly dense arrays of 3-µm mean diameter wells were obtained by wet chemical etching of optical fiber bundles. Favorable conditions for the stable entrapment of individual mitochondria within a majority of microwells were found. Owing to NADH auto-fluorescence, the metabolic status of each mitochondrion was analyzed at resting state (Stage 1), then following the addition of a respiratory substrate (Stage 2), ethanol herein, and of a respiratory inhibitor (Stage 3), antimycin A. Mean levels of mitochondrial NADH were increased by 29% and 35% under Stages 2 and 3, respectively. We showed that mitochondrial ability to generate higher levels of NADH (i.e., its metabolic performance) is not correlated either to the initial energetic state or to the respective size of each mitochondrion. This study demonstrates that microwell arrays allow metabolic studies on populations of isolated mitochondria with a single organelle resolution.


Asunto(s)
Análisis por Micromatrices/métodos , Mitocondrias/química , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Análisis por Micromatrices/instrumentación , Microscopía Fluorescente , NAD/metabolismo , Fibras Ópticas , Saccharomyces cerevisiae/química
18.
Angew Chem Int Ed Engl ; 53(15): 4001-5, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24604879

RESUMEN

Herein, bipolar electrochemistry is applied in a straightforward way to the site-selective in situ synthesis of metal-organic framework (MOF) structures, which have attracted tremendous interest in recent years because of their significant application potential, ranging from sensing to gas storage and catalysis. The novelty of the presented work is that the deposit can be intentionally confined to a defined area of a substrate without using masks or templates. The intrinsic site-selectivity of bipolar electrochemistry makes it a method of choice to generate, in a highly controlled way, hybrid particles that may have different functionalities combined on the same particle. The wireless nature of electrodeposition allows the potential for mass production of such Janus-type objects.


Asunto(s)
Metales/química , Compuestos Organometálicos/química , Catálisis , Electroquímica , Modelos Moleculares , Estructura Molecular
19.
Adv Mater ; 36(6): e2307539, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37805916

RESUMEN

Asymmetric modification of particles with various patches of different composition and size at predefined positions is an important challenge in contemporary surface chemistry, as such particles have numerous potential applications, ranging from materials science and (photo)catalysis to self-assembly and drug delivery. However, approaches allowing the synthesis of this kind of complex objects in the bulk of a solution in a straightforward way are currently lacking. In this context, bipolar electrochemistry (BE) is a powerful technique for the asymmetric modification of conducting objects. Herein, this approach is used for the highly controlled modification of particles with different metal patches, generated at specific locations of isotropic objects. The synthesis is carried out in the bulk of the solution and leads to predefined patterns of increasing complexity, including even a specific chiral arrangement of the patches.

20.
Electrophoresis ; 34(14): 1985-90, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23595977

RESUMEN

The site selective electrodeposition of silver metal onto a conducting object such as carbon microtubes (CMTs) in an electrolytic solution could be achieved by means of bipolar electrochemistry. Two half reactions are simultaneously carried out at both extremities of the CMT, which act as a bipolar electrode. The thermodynamic threshold value of the process, which consists in metal electroreduction and concomitant water oxidation is directly related to the length of CMT. That is the reason why, when scaling down the methodology to microscale objects, electric fields in the range of tenths of kilovolts per meter are necessary. In that context, a CE apparatus provides a convenient experimental platform to achieve in a straightforward manner such experimental conditions. We exemplify this methodology with the efficient and quick electroreduction of Ag⁺ on CMTs from a low-concentration aqueous electrolytic solution during the migration across a fused capillary. CE allows applying safely a large enough electric field (typically ∼30 kV/m) for the successful modification of 15 to 20 µm-long substrates. The corresponding hybrid materials have been characterized by optical microscopy as well as SEM and energy-dispersive X-ray spectroscopy.


Asunto(s)
Carbono/química , Electroforesis Capilar/instrumentación , Galvanoplastia/instrumentación , Plata/química , Diseño de Equipo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA