Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Mol Med ; 28(1): 101, 2022 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-36058921

RESUMEN

BACKGROUND: Deregulated translation initiation is implicated extensively in cancer initiation and progression. It is actively pursued as a viable target that circumvents the dependency on oncogenic signaling, a significant factor in current strategies. Eukaryotic translation initiation factor (eIF) 4A plays an essential role in translation initiation by unwinding the secondary structure of messenger RNA (mRNA) upstream of the start codon, enabling active ribosomal recruitment on the downstream genes. Several natural product molecules with similar scaffolds, such as Rocaglamide A (RocA), targeting eIF4A have been reported in the last decade. However, their clinical utilization is still elusive due to several pharmacological limitations. In this study we identified new eIF4A1 inhibitors and their possible mechanisms. METHODS: In this report, we conducted a pharmacophore-based virtual screen of RocA complexed with eIF4A and a polypurine RNA strand for novel eIF4A inhibitors from commercially available compounds in the MolPort Database. We performed target-based screening and optimization of active pharmacophores. We assessed the effects of novel compounds on biochemical and cell-based assays for efficacy and mechanistic evaluation. RESULTS: We validated three new potent eIF4A inhibitors, RBF197, RBF 203, and RBF 208, which decreased diffuse large B-cell lymphoma (DLBCL) cell viability. Biochemical and cellular studies, molecular docking, and functional assays revealed that thosenovel compounds clamp eIF4A into mRNA in an ATP-independent manner. Moreover, we found that RBF197 and RBF208 significantly depressed eIF4A-dependent oncogene expression as well as the colony formation capacity of DLBCL. Interestingly, exposure of these compounds to non-malignant cells had only minimal impact on their growth and viability. CONCLUSIONS: Identified compounds suggest a new strategy for designing novel eIF4A inhibitors.


Asunto(s)
Linfoma , Neoplasias , Factor 4A Eucariótico de Iniciación/química , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo , Humanos , Linfoma/tratamiento farmacológico , Simulación del Acoplamiento Molecular , ARN Mensajero/metabolismo
2.
Proc Natl Acad Sci U S A ; 112(30): 9412-7, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26170311

RESUMEN

HIV necessitates host factors for successful completion of its life cycle. Mammalian target of rapamycin (mTOR) is a conserved serine/threonine kinase that forms two complexes, mTORC1 and mTORC2. Rapamycin is an allosteric inhibitor of mTOR that selectively inhibits mTORC1. Rapamycin interferes with viral entry of CCR5 (R5)-tropic HIV and with basal transcription of the HIV LTR, potently inhibiting replication of R5 HIV but not CXCR4 (X4)-tropic HIV in primary cells. The recently developed ATP-competitive mTOR kinase inhibitors (TOR-KIs) inhibit both mTORC1 and mTORC2. Using INK128 as a prototype TOR-KI, we demonstrate potent inhibition of both R5 and X4 HIV in primary lymphocytes (EC50 < 50 nM), in the absence of toxicity. INK128 inhibited R5 HIV entry by reducing CCR5 levels. INK128 also inhibited both basal and induced transcription of HIV genes, consistent with inhibition of mTORC2, whose activity is critical for phosphorylation of PKC isoforms and, in turn, induction of NF-κB. INK128 enhanced the antiviral potency of the CCR5 antagonist maraviroc, and had favorable antiviral interactions with HIV inhibitors of reverse transcriptase, integrase and protease. In humanized mice, INK128 decreased plasma HIV RNA by >2 log10 units and partially restored CD4/CD8 cell ratios. Targeting of cellular mTOR with INK128 (and perhaps others TOR-KIs) provides a potential strategy to inhibit HIV, especially in patients with drug resistant HIV strains.


Asunto(s)
Infecciones por VIH/metabolismo , VIH-1/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Adenosina Trifosfato/química , Sitio Alostérico , Animales , Fármacos Anti-VIH/uso terapéutico , Benzoxazoles/química , Linfocitos T CD4-Positivos/citología , Dominio Catalítico , Proliferación Celular , Supervivencia Celular , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica , Humanos , Interleucina-2/metabolismo , Leucocitos Mononucleares/citología , Linfocitos/citología , Linfocitos/virología , Ratones , FN-kappa B/metabolismo , Pirimidinas/química , Transcripción Genética
3.
PLoS Genet ; 10(1): e1004105, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24497838

RESUMEN

Deregulation of the translational machinery is emerging as a critical contributor to cancer development. The contribution of microRNAs in translational gene control has been established however; the role of microRNAs in disrupting the cap-dependent translation regulation complex has not been previously described. Here, we established that elevated miR-520c-3p represses global translation, cell proliferation and initiates premature senescence in HeLa and DLBCL cells. Moreover, we demonstrate that miR-520c-3p directly targets translation initiation factor, eIF4GII mRNA and negatively regulates eIF4GII protein synthesis. miR-520c-3p overexpression diminishes cells colony formation and reduces tumor growth in a human xenograft mouse model. Consequently, downregulation of eIF4GII by siRNA decreases translation, cell proliferation and ability to form colonies, as well as induces cellular senescence. In vitro and in vivo findings were further validated in patient samples; DLBCL primary cells demonstrated low miR-520c-3p levels with reciprocally up-regulated eIF4GII protein expression. Our results provide evidence that the tumor suppressor effect of miR-520c-3p is mediated through repression of translation while inducing senescence and that eIF4GII is a key effector of this anti-tumor activity.


Asunto(s)
Proliferación Celular , Factor 4G Eucariótico de Iniciación/genética , Linfoma de Células B Grandes Difuso/genética , MicroARNs/genética , Animales , Línea Celular Tumoral , Senescencia Celular/genética , Regulación hacia Abajo , Factor 4G Eucariótico de Iniciación/biosíntesis , Regulación Neoplásica de la Expresión Génica , Humanos , Linfoma de Células B Grandes Difuso/patología , Ratones , MicroARNs/biosíntesis , ARN Mensajero/genética , ARN Interferente Pequeño , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Blood ; 124(25): 3758-67, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25320244

RESUMEN

Human diffuse large B-cell lymphomas (DLBCLs) often aberrantly express oncogenes that generally contain complex secondary structures in their 5' untranslated region (UTR). Oncogenes with complex 5'UTRs require enhanced eIF4A RNA helicase activity for translation. PDCD4 inhibits eIF4A, and PDCD4 knockout mice have a high penetrance for B-cell lymphomas. Here, we show that on B-cell receptor (BCR)-mediated p70s6K activation, PDCD4 is degraded, and eIF4A activity is greatly enhanced. We identified a subset of genes involved in BCR signaling, including CARD11, BCL10, and MALT1, that have complex 5'UTRs and encode proteins with short half-lives. Expression of these known oncogenic proteins is enhanced on BCR activation and is attenuated by the eIF4A inhibitor Silvestrol. Antigen-experienced immunoglobulin (Ig)G(+) splenic B cells, from which most DLBCLs are derived, have higher levels of eIF4A cap-binding activity and protein translation than IgM(+) B cells. Our results suggest that eIF4A-mediated enhancement of oncogene translation may be a critical component for lymphoma progression, and specific targeting of eIF4A may be an attractive therapeutic approach in the management of human B-cell lymphomas.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , ARN Helicasas DEAD-box/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Guanilato Ciclasa/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Regiones no Traducidas 5'/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 10 de la LLC-Linfoma de Células B , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Western Blotting , Proteínas Adaptadoras de Señalización CARD/genética , Caspasas/genética , Caspasas/metabolismo , Línea Celular Tumoral , Células Cultivadas , ARN Helicasas DEAD-box/antagonistas & inhibidores , ARN Helicasas DEAD-box/genética , Factor 4A Eucariótico de Iniciación/antagonistas & inhibidores , Factor 4A Eucariótico de Iniciación/genética , Guanilato Ciclasa/genética , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Persona de Mediana Edad , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Triterpenos/farmacología
5.
Blood ; 121(2): 329-38, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23160467

RESUMEN

Cyclophosphamide (CPA) is one of the most widely used chemotherapeutic prodrugs that undergoes hepatic bioactivation mediated predominantly by cytochrome P450 (CYP) 2B6. Given that the CYP2B6 gene is primarily regulated by the constitutive androstane receptor (CAR, NR1I3), we hypothesize that selective activation of CAR can enhance systemic exposure of the pharmacologically active 4-hydroxycyclophosamide (4-OH-CPA), with improved efficacy of CPA-based chemotherapy. In this study, we have developed a unique human primary hepatocyte (HPH)-leukemia cell coculture model; the chemotherapeutic effects of CPA on leukemia cells can be directly investigated in vitro in a cellular environment where hepatic metabolism was well maintained. Our results demonstrated that activation of CAR preferentially induces the expression of CYP2B6 over CYP3A4 in HPHs, although endogenous expression of these enzymes in leukemia cells remains negligible. Importantly, coadministration of CPA with a human CAR activator led to significantly enhanced cytotoxicity in leukemia cells by inducing the apoptosis pathways, without concomitant increase in the off-target hepatotoxicity. Associated with the enhanced antitumor activity, a time and concentration-dependent increase in 4-OH-CPA formation was observed in the coculture system. Together, our findings offer proof of concept that CAR as a novel molecular target can facilitate CPA-based chemotherapy by selectively promoting its bioactivation.


Asunto(s)
Antineoplásicos/metabolismo , Antineoplásicos/uso terapéutico , Ciclofosfamida/metabolismo , Ciclofosfamida/uso terapéutico , Leucemia/tratamiento farmacológico , Profármacos/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Hidrocarburo de Aril Hidroxilasas/metabolismo , Western Blotting , Línea Celular Tumoral , Cromatografía Liquida , Técnicas de Cocultivo , Receptor de Androstano Constitutivo , Citocromo P-450 CYP2B6 , Citocromo P-450 CYP3A/metabolismo , Fragmentación del ADN , Citometría de Flujo , Hepatocitos/metabolismo , Humanos , Leucemia/metabolismo , Espectrometría de Masas , Oxidorreductasas N-Desmetilantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Cell Commun Signal ; 13: 15, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25849580

RESUMEN

BACKGROUND: The mechanistic target of rapamycin, (mTOR) kinase plays a pivotal role in controlling critical cellular growth and survival pathways, and its aberrant induction is implicated in cancer pathogenesis. Therefore, suppression of active mTOR signaling has been of great interest to researchers; several mTOR inhibitors have been discovered to date. Ethanol (EtOH), similar to pharmacologic mTOR inhibitors, has been shown to suppress the mTOR signaling pathway, though in a non-catalytic manner. Despite population studies showing that the consumption of EtOH has a protective effect against hematological malignancies, the mechanisms behind EtOH's modulation of mTOR activity in cells and its downstream consequences are largely unknown. Here we evaluated the effects of EtOH on the mTOR pathway, in comparison to the active-site mTOR inhibitor INK128, and compared translatome analysis of their downstream effects in diffuse large B-cell lymphoma (DLBCL). RESULTS: Treatment of DLBCL cells with EtOH suppressed mTORC1 complex formation while increasing AKT phosphorylation and mTORC2 complex assembly. INK128 completely abrogated AKT phosphorylation without affecting the structure of mTORC1/2 complexes. Accordingly, EtOH less profoundly suppressed cap-dependent translation and global protein synthesis, compared to a remarkable inhibitory effect of INK128 treatment. Importantly, EtOH treatment induced the formation of stress granules, while INK128 suppressed their formation. Microarray analysis of polysomal RNA revealed that although both agents primarily affected cell growth and survival, EtOH and INK128 regulated the synthesis of mostly distinct genes involved in these processes. Though both EtOH and INK128 inhibited cell cycle, proliferation and autophagy, EtOH, in contrast to INK128, did not induce cell apoptosis. CONCLUSION: Given that EtOH, similar to pharmacologic mTOR inhibitors, inhibits mTOR signaling, we systematically explored the effect of EtOH and INK128 on mTOR signal transduction, components of the mTORC1/2 interaction and their downstream effectors in DLBCL malignancy. We found that EtOH partially inhibits mTOR signaling and protein translation, compared to INK128's complete mTOR inhibition. Translatome analysis of mTOR downstream target genes established that differential inhibition of mTOR by EtOH and INK128 distinctly modulates translation of specific subsets of mRNAs involved in cell growth and survival, leading to differential cellular response and survival.


Asunto(s)
Benzoxazoles/farmacología , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Linfoma de Células B Grandes Difuso/metabolismo , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Autofagia/efectos de los fármacos , Autofagia/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
7.
Immunology ; 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25227493

RESUMEN

Interactions between NK and dendritic cells (DC) affect maturation and function of both cell populations, including NK killing of DC (editing) that is important for controlling the quality of immune responses. We also know that antigen-stimulated Vγ2Vδ2 T cells costimulate NK cells via 4-1BB to enhance killing of tumor cell lines but we do not know what regulates 4-1BB expression or whether other NK effector functions including DC killing, might also be influenced by NK:γδ T cell cross talk. Here we show that antigen-stimulated γδ T cells costimulate NK through ICOS:ICOSL and this signal increases NK killing of autologous DC. Effects of NK:γδ T cell co-culture, which could be reproduced with soluble ICOS-Fc fusion protein, included increased CD69 and 4-1BB expression, IFN-γ, TNF-α, MIP-1ß, I-309, RANTES and sFasL production, as well as elevated mRNA levels for costimulatory receptors OX40 (TNFRSF4) and GITR (TNFRSF18). Thus, ICOS/ICOSL costimulation of NK by Vγ2Vδ2 T cells had broad effects on NK phenotype and effector functions. The NK γδ T cell cross talk links innate and antigen-specific lymphocyte responses in the control of cytotoxic effector function and dendritic cell killing. This article is protected by copyright. All rights reserved.

8.
Am J Pathol ; 183(4): 1306-17, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24070417

RESUMEN

Membrane-associated serine protease matriptase is widely expressed by epithelial/carcinoma cells in which its proteolytic activity is tightly controlled by the Kunitz-type protease inhibitor, hepatocyte growth factor activator inhibitor (HAI-1). We demonstrate that, although matriptase is not expressed in lymphoid hyperplasia, roughly half of the non-Hodgkin B-cell lymphomas analyzed express significant amounts of matriptase. Furthermore, a significant proportion of these tumors express matriptase in the absence of HAI-1. Aggressive Burkitt lymphoma was more likely than indolent follicular lymphoma to express matriptase alone (86% versus 36%). In the absence of significant HAI-1 expression, the lymphoma cells activate and shed active matriptase when the cells are stimulated with mildly acidic buffer or the hypoxia-mimicking agent, CoCl2. The shed active matriptase can initiate pericellular proteolytic cascades by activating urokinase-type plasminogen activator on the cell surface of monocytes, and it can activate prohepatocyte growth factor. In addition, matriptase knockdown suppressed proliferation and colony-forming ability of neoplastic B cells in culture and growth as tumor xenografts in mice. Furthermore, exogenous expression of HAI-1 significantly suppressed proliferation of neoplastic B cells. These studies suggest that dysregulated pericellular proteolysis as a result of unregulated matriptase expression with limited HAI-1 may contribute to the pathological characteristics of several human B-cell lymphomas through modulation of the tumor microenvironment and enhanced tumor growth.


Asunto(s)
Linfoma de Células B/enzimología , Linfoma de Células B/patología , Proteolisis , Serina Endopeptidasas/metabolismo , Animales , Linfocitos B/enzimología , Linfocitos B/patología , Línea Celular Tumoral , Proliferación Celular , Femenino , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Ganglios Linfáticos/enzimología , Ganglios Linfáticos/patología , Ratones , Ratones SCID , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Blood ; 118(4): 1052-61, 2011 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21628402

RESUMEN

The RAS/RAF/MEK/ERK signaling pathway has been largely unexplored as a potential therapeutic target in lymphoma. The novel 2nd generation anti-MEK small molecule, AZD6244, down-regulated its direct downstream target, phospho-ERK (pERK) in germinal center and nongerminal center diffuse large B-cell lymphoma (DLBCL) cell lines and primary cells. Similar decreased pERK levels were noted despite constitutive activation (CA) of MEK. Consequently, several lymphoma-related ERK substrates were down-regulated by AZD6244 including MCT-1, c-Myc, Bcl-2, Mcl-1, and CDK1/2. AZD6244 induced time- and dose-dependent antiproliferation and apoptosis in all DLBCL cell lines and fresh/primary cells (IC(50) 100nM-300nM). Furthermore, AZD6244 resulted in significantly less tumor compared with control in an in vivo DLBCL SCID xenograft model. Cell death was associated with cleaved PARP, caspases-8, -9, and -3, and apoptosis was caspase-dependent. In addition, there was stabilization of FoxO3a, activation of BIM and PUMA, and a significant decrease in c-Myc transcripts. Moreover, siRNA knockdown of BIM abrogated AZD6244-related apoptosis, while shRNA knockdown of ERK minimally sensitized cells. Finally, manipulation of AKT with transfection of OCI-LY3 cells with CA-AKT or through chemical inhibition (LY294002) had minimal effect on AZD6244-induced cell death. Altogether, these findings show that the novel anti-MEK agent, AZD6244, induced apoptosis in DLBCL and that cell death was BIM-dependent.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Bencimidazoles/farmacología , Linfoma de Células B Grandes Difuso/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Proteína 11 Similar a Bcl2 , Western Blotting , Línea Celular Tumoral , Femenino , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Ratones , Ratones SCID , Inhibidores de Proteínas Quinasas/farmacología , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Blood ; 117(8): 2441-50, 2011 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-21209379

RESUMEN

Maintenance of genomic stability depends on the DNA damage response, a biologic barrier in early stages of cancer development. Failure of this response results in genomic instability and high predisposition toward lymphoma, as seen in patients with ataxia-telangiectasia mutated (ATM) dysfunction. ATM activates multiple cell-cycle checkpoints and DNA repair after DNA damage, but its influence on posttranscriptional gene expression has not been examined on a global level. We show that ionizing radiation modulates the dynamic association of the RNA-binding protein HuR with target mRNAs in an ATM-dependent manner, potentially coordinating the genotoxic response as an RNA operon. Pharmacologic ATM inhibition and use of ATM-null cells revealed a critical role for ATM in this process. Numerous mRNAs encoding cancer-related proteins were differentially associated with HuR depending on the functional state of ATM, in turn affecting expression of encoded proteins. The findings presented here reveal a previously unidentified role of ATM in controlling gene expression posttranscriptionally. Dysregulation of this DNA damage response RNA operon is probably relevant to lymphoma development in ataxia-telangiectasia persons. These novel RNA regulatory modules and genetic networks provide critical insight into the function of ATM in oncogenesis.


Asunto(s)
Proteínas de Ciclo Celular/genética , Daño del ADN , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Linfocitos/metabolismo , Operón/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Supresoras de Tumor/genética , Antígenos de Superficie/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Reparación del ADN , Proteínas ELAV , Proteína 1 Similar a ELAV , Redes Reguladoras de Genes , Humanos , Linfoma/etiología , Proteínas Mutantes , Unión Proteica/efectos de la radiación , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Radiación Ionizante
12.
Blood ; 115(11): 2127-35, 2010 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-20075156

RESUMEN

The dysregulation of protein synthesis evident in the transformed phenotype has opened up a burgeoning field of research in cancer biology. Translation initiation has recently been shown to be a common downstream target of signal transduction pathways deregulated in cancer and initiated by mutated/overexpressed oncogenes and tumor suppressors. The overexpression and/or activation of proteins involved in translation initiation such as eIF4E, mTOR, and eIF4G have been shown to induce a malignant phenotype. Therefore, understanding the mechanisms that control protein synthesis is emerging as an exciting new research area with significant potential for developing innovative therapies. This review highlights molecules that are activated or dysregulated in hematologic malignancies, and promotes the transformed phenotype through the deregulation of protein synthesis. Targeting these proteins with small molecule inhibitors may constitute a novel therapeutic approach in the treatment of cancer.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Hematológicas/tratamiento farmacológico , Biosíntesis de Proteínas/efectos de los fármacos , Factor 4F Eucariótico de Iniciación/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina-Treonina Quinasas TOR
13.
Nucleic Acids Res ; 38(11): 3619-31, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20159994

RESUMEN

Androgen receptor (AR)-mediated pathways play a critical role in the development and progression of prostate cancer. However, little is known about the regulation of AR mRNA stability and translation, two central processes that control AR expression. The ErbB3 binding protein 1 (EBP1), an AR corepressor, negatively regulates crosstalk between ErbB3 ligand heregulin (HRG)-triggered signaling and the AR axis, affecting biological properties of prostate cancer cells. EBP1 protein expression is also decreased in clinical prostate cancer. We previously demonstrated that EBP1 overexpression results in decreased AR protein levels by affecting AR promoter activity. However, EBP1 has recently been demonstrated to be an RNA binding protein. We therefore examined the ability of EBP1 to regulate AR post-transcriptionally. Here we show that EBP1 promoted AR mRNA decay through physical interaction with a conserved UC-rich motif within the 3'-UTR of AR. The ability of EBP1 to accelerate AR mRNA decay was further enhanced by HRG treatment. EBP1 also bound to a CAG-formed stem-loop in the 5' coding region of AR mRNA and was able to inhibit AR translation. Thus, decreases of EBP1 in prostate cancer could be important for the post-transcriptional up-regulation of AR contributing to aberrant AR expression and disease progression.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , Estabilidad del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores Androgénicos/genética , Regiones no Traducidas 3' , Secuencia de Bases , Línea Celular Tumoral , Humanos , Masculino , Datos de Secuencia Molecular , Polirribosomas/metabolismo , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo
14.
Mol Cancer Res ; 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35191952

RESUMEN

Patients with high-risk diffuse large B-cell lymphoma (DLBCL) have poor outcomes following first-line cyclophosphamide, doxorubicin, vincristine, prednisone, and rituximab (R-CHOP); thus, treatment of this fatal disease remains an area of unmet medical need and requires identification of novel therapeutic approaches. Dysregulation of protein translation initiation has emerged as a common downstream node in several malignancies, including lymphoma. Ubiquitination, a prominent post-translational modification associated with substrate degradation, has recently been shown to be a key modulator of nascent peptide synthesis by limiting several translational initiation factors. While a few deubiquitinases have been identified, the E3-ligase responsible for the critical ubiquitination of these translational initiation factors is still unknown. In this study, using complementary cellular models along with clinical readouts, we establish that PARK2 ubiquitinates eIF4B and consequently regulates overall protein translational activity. The formation of this interaction depends on upstream signaling, which is negatively regulated at the protein level of PARK2. Through biochemical, mutational, and genetic studies, we identified PARK2 as a mTORC1 substrate. mTORC1 phosphorylates PARK2 at Ser127, which blocks its cellular ubiquitination activity, thereby hindering its tumor suppressor effect on eIF4B's stability. This resultant increase of eIF4B protein level helps drive enhanced overall protein translation. These data support a novel paradigm in which PARK2-generated eIF4B ubiquitination serves as an anti-oncogenic intracellular inhibitor of protein translation, attenuated by mTORC1 signaling. Implications: Our data implicates the FASN/mTOR-PARK2-eIF4B axis as a critical driver of enhanced oncogene expression contributing to lymphomagenesis.

15.
Mol Cancer Res ; 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35105670

RESUMEN

Patients with high-risk diffuse large B-cell lymphoma (DLBCL) have poor outcomes following first-line cyclophosphamide, doxorubicin, vincristine, prednisone, and rituximab (R-CHOP); thus, treatment of this fatal disease remains an area of unmet medical need and requires identification of novel therapeutic approaches. Dysregulation of protein translation initiation has emerged as a common downstream node in several malignancies, including lymphoma. Ubiquitination, a prominent post-translational modification associated with substrate degradation, has recently been shown to be a key modulator of nascent peptide synthesis by limiting several translational initiation factors. While a few deubiquitinases have been identified, the E3-ligase responsible for the critical ubiquitination of these translational initiation factors is still unknown. In this study, using complementary cellular models along with clinical readouts, we establish that PARK2 ubiquitinates eIF4B and consequently regulates overall protein translational activity. The formation of this interaction depends on upstream signaling, which is negatively regulated at the protein level of PARK2. Through biochemical, mutational, and genetic studies, we identified PARK2 as a mTORC1 substrate. mTORC1 phosphorylates PARK2 at Ser127, which blocks its cellular ubiquitination activity, thereby hindering its tumor suppressor effect on eIF4B's stability. This resultant increase of eIF4B protein level helps drive enhanced overall protein translation. These data support a novel paradigm in which PARK2-generated eIF4B ubiquitination serves as an anti-oncogenic intracellular inhibitor of protein translation, attenuated by mTORC1 signaling. Implications: Our data implicates the FASN/mTOR-PARK2-eIF4B axis as a critical driver of enhanced oncogene expression contributing to lymphomagenesis.

16.
Exp Hematol ; 108: 55-63, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35104581

RESUMEN

The clinical outcomes of patients with acute myeloid leukemia (AML) treated with available therapy remain unsatisfactory. We recently reported that the BCL-2 inhibitor venetoclax synergizes with pegcrisantaspase (Ven-PegC) and exhibits remarkable in vivo efficacy in a preclinical model of AML with complex karyotype. The Ven-PegC combination blocks synthesis of proteins in AML cells by inhibiting cap-dependent translation of mRNA. To further explore the impact of Ven-PegC on protein translation, we used polysome profiling and high-throughput RNA sequencing to characterize Ven-PegC-dependent changes to the translatome. Here we report that the translation of five mRNAs, including two microRNAs, one rRNA, and two mitochondrial genes, was altered after exposure to all three treatments (Ven, PegC, and Ven-PegC). We focused our translatome validation studies on six additional genes related to translational efficiency that were modified by Ven-PegC. Notably, Ven-PegC treatment increased the RNA translation and protein levels of Tribbles homologue 3 (TRIB3), eukaryotic translation initiation factor 3 subunit C (eIF3C), doublesex and mab-3-related transcription factor 1 (DMRT1), and salt-inducible kinase 1 (SIK1). We validated the observed changes in gene/protein expression in vitro and confirmed our cell line-based studies in the bone marrow of an AML patient-derived xenograft model after Ven-PegC treatment. These results support examining alterations in the translatome post chemotherapy to offer insight into the drug's mechanism of action and to inform future therapeutic decisions.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Leucemia Mieloide Aguda , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico
17.
Anticancer Agents Med Chem ; 22(2): 239-253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34080968

RESUMEN

BACKGROUND: The clinical outcomes of patients with Acute Myeloid Leukemia (AML) remain unsatisfactory. Therefore the development of more efficacious and better-tolerated therapy for AML is critical. We have previously reported anti-leukemic activity of synthetic halohydroxyl dimeric naphthoquinones (BiQ) and aziridinyl BiQ. OBJECTIVE: This study aimed to improve the potency and bioavailability of BiQ compounds and investigate antileukemic activity of the lead compound in vitro and a human AML xenograft mouse model. METHODS: We designed, synthesized, and performed structure-activity relationships of several rationally designed BiQ analogues with amino alcohol functional groups on the naphthoquinone core rings. The compounds were screened for anti-leukemic activity and the mechanism as well as in vivo tolerability and efficacy of our lead compound was investigated. RESULTS: We report that a dimeric naphthoquinone (designated BaltBiQ) demonstrated potent nanomolar anti-leukemic activity in AML cell lines. BaltBiQ treatment resulted in the generation of reactive oxygen species, induction of DNA damage, and inhibition of indoleamine dioxygenase 1. Although BaltBiQ was tolerated well in vivo, it did not significantly improve survival as a single agent, but in combination with the specific Bcl-2 inhibitor, Venetoclax, tumor growth was significantly inhibited compared to untreated mice. CONCLUSION: We synthesized a novel amino alcohol dimeric naphthoquinone, investigated its main mechanisms of action, reported its in vitro anti-AML cytotoxic activity, and showed its in vivo promising activity combined with a clinically available Bcl-2 inhibitor in a patient-derived xenograft model of AML.


Asunto(s)
Amino Alcoholes/farmacología , Antineoplásicos/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Naftoquinonas/farmacología , Amino Alcoholes/química , Animales , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Leucemia Mieloide Aguda/patología , Ratones , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Naftoquinonas/química , Relación Estructura-Actividad
18.
Blood ; 113(22): 5526-35, 2009 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-19293424

RESUMEN

Several epidemiologic studies support the emerging paradigm that current alcohol consumers have decreased risk of most types of non-Hodgkin lymphoma. The observed lower risk among people who drank alcohol does not seem to vary with beverage type. The mechanisms accounting for alcohol-induced decrease in the incidence of lymphomas remain largely unknown. We demonstrate that low-dose chronic exposure to ethanol inhibits mammalian target of rapamycin (mTOR) C1 complex formation, resulting in decreased phosphorylation events involved in mTOR pathway signaling in a lymphoid-tissue specific manner. These changes in mTOR signaling lead to a decrease in eIF4E associated with the translation initiation complex and a repression of global cap-dependent synthesis in both lymphoma cell lines and normal donor lymphocytes. We show that chronic exposure of ethanol at physiologically relevant concentrations in a xenograft model results in a striking inhibition of lymphoma growth. Our data support a paradigm in which chronic ethanol exposure inhibits mTOR signaling in lymphocytes with a significant repression of cap-dependent translation, reducing the tumorigenic capacity of non-Hodgkin lymphoma in a human xenograft model. The ethanol-mediated repression of mTOR signaling coupled with decreased in vivo lymphoma growth underscore the critical role of mTOR signaling and translation in lymphoma.


Asunto(s)
Consumo de Bebidas Alcohólicas/fisiopatología , Linfoma no Hodgkin/etiología , Proteínas Quinasas/fisiología , Proteínas Adaptadoras Transductoras de Señales , Consumo de Bebidas Alcohólicas/metabolismo , Animales , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Etanol/farmacología , Factor 4E Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones SCID , Complejos Multiproteicos , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteínas , Proteína S6 Ribosómica/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Factores de Riesgo , Serina-Treonina Quinasas TOR , Factores de Transcripción/metabolismo , Trasplante Heterólogo , Células Tumorales Cultivadas
19.
Leukemia ; 35(7): 1907-1924, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33199836

RESUMEN

Complex karyotype acute myeloid leukemia (CK-AML) has a dismal outcome with current treatments, underscoring the need for new therapies. Here, we report synergistic anti-leukemic activity of the BCL-2 inhibitor venetoclax (Ven) and the asparaginase formulation Pegylated Crisantaspase (PegC) in CK-AML in vitro and in vivo. Ven-PegC combination inhibited growth of multiple AML cell lines and patient-derived primary CK-AML cells in vitro. In vivo, Ven-PegC showed potent reduction of leukemia burden and improved survival, compared with each agent alone, in a primary patient-derived CK-AML xenograft. Superiority of Ven-PegC, compared to single drugs, and, importantly, the clinically utilized Ven-azacitidine combination, was also demonstrated in vivo in CK-AML. We hypothesized that PegC-mediated plasma glutamine depletion inhibits 4EBP1 phosphorylation, decreases the expression of proteins such as MCL-1, whose translation is cap dependent, synergizing with the BCL-2 inhibitor Ven. Ven-PegC treatment decreased cellular MCL-1 protein levels in vitro by enhancing eIF4E-4EBP1 interaction on the cap-binding complex via glutamine depletion. In vivo, Ven-PegC treatment completely depleted plasma glutamine and asparagine and inhibited mRNA translation and cellular protein synthesis. Since this novel mechanistically-rationalized regimen combines two drugs already in use in acute leukemia treatment, we plan a clinical trial of the Ven-PegC combination in relapsed/refractory CK-AML.


Asunto(s)
Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Sulfonamidas/farmacología , Animales , Línea Celular Tumoral , Femenino , Células HL-60 , Humanos , Células K562 , Leucemia Mieloide Aguda/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células U937
20.
BMC Bioinformatics ; 11: 606, 2010 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-21176134

RESUMEN

BACKGROUND: Most genomic data have ultra-high dimensions with more than 10,000 genes (probes). Regularization methods with L1 and L(p) penalty have been extensively studied in survival analysis with high-dimensional genomic data. However, when the sample size n << m (the number of genes), directly identifying a small subset of genes from ultra-high (m > 10, 000) dimensional data is time-consuming and not computationally efficient. In current microarray analysis, what people really do is select a couple of thousands (or hundreds) of genes using univariate analysis or statistical tests, and then apply the LASSO-type penalty to further reduce the number of disease associated genes. This two-step procedure may introduce bias and inaccuracy and lead us to miss biologically important genes. RESULTS: The accelerated failure time (AFT) model is a linear regression model and a useful alternative to the Cox model for survival analysis. In this paper, we propose a nonlinear kernel based AFT model and an efficient variable selection method with adaptive kernel ridge regression. Our proposed variable selection method is based on the kernel matrix and dual problem with a much smaller n x n matrix. It is very efficient when the number of unknown variables (genes) is much larger than the number of samples. Moreover, the primal variables are explicitly updated and the sparsity in the solution is exploited. CONCLUSIONS: Our proposed methods can simultaneously identify survival associated prognostic factors and predict survival outcomes with ultra-high dimensional genomic data. We have demonstrated the performance of our methods with both simulation and real data. The proposed method performs superbly with limited computational studies.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Modelos Lineales , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Algoritmos , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA