Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Cell Biochem ; 120(8): 13501-13508, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30938883

RESUMEN

Nitrogen is the key factor for plant survival and growth, especially in the desert. Stipagrostis pennata, a sand born drought-resistant plant, could colonize pioneerly in Gurbantunggut Desert during revegetation. One strategy for their environment adaptation was the rhizosheath formatted by root-hair, mucilaginous exudates, microbial components, and soil particles, for which not only provides a favorable living microenvironment but also supplies essential nutrients. To understand the relationship between microorganisms living in rhizosheaths and the nitrogen nutrition supply, the microbial diversity and nitrogenase activity was estimated during the growth of S. pennata. Five samples of the rhizosheath, which based on the development periods of the plant, regreen, flowering, filling, seed maturating, and withering period, were collected. The nitrogenase activity was estimated by acetylene reduction and the microbial diversity was analyzed by 16S rRNA high-throughput sequencing. The results showed that the nitrogenase activity was increased slowly during regreen to flowering, while reached a peak rapidly at filling sample and then decreased gradually. A total of 274 operational taxonomic units (OTUs) were identified and significant differences in community structure and composition at each growth period. Among them, the main phyla included Actinobacteria and Proteus, which were the most abundant phyla in all periods. In addition, the microbial diversity in the grain filling period was higher than other periods in view of the analysis of alpha diversity and beta diversity. Furthermore, principal component analysis (PCA) analysis showed that the microbial communities in the filling period was low in similarity with other periods. Most importantly, the OTUs associated with nitrogen fixation is the most during the filling period, involving Phagecidae and Fucoraceae. Overall, the study not only revealed the differences in nitrogenase activity among different developmental periods in S. pennata, but also explored the potential bridges between it and community structure and diversity of bacteria.


Asunto(s)
Fijación del Nitrógeno/genética , Nitrogenasa/genética , Poaceae/genética , Rizosfera , Actinobacteria/genética , Actinobacteria/crecimiento & desarrollo , Ecosistema , Regulación de la Expresión Génica de las Plantas/genética , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Poaceae/crecimiento & desarrollo , Poaceae/microbiología , Proteus/genética , Proteus/crecimiento & desarrollo , ARN Ribosómico 16S/genética , Suelo
2.
Biosci Rep ; 41(4)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33779713

RESUMEN

PURPOSE: Rhizosheath is an adaptive feature for the survival of Stipagrostis pennata in desert systems. Although microorganisms play important ecological roles in promoting the nitrogen cycle of rhizosheath, the diversity and function of nitrogen-fixing microorganism communities have not been fully understood. MATERIALS AND METHODS: Therefore, the aim of the present study is to explore the nitrogen fixation ability of rhizosheaths and the changes in abundance of nitrogen-fixing microorganisms at different growth periods of S. pennata. We sequenced the nifH gene through sequencing to identify the structure and diversity of nitrogen-fixing microorganisms of S. pennata at different growth periods of rhizosheaths. RESULTS: A total of 1256 operational taxonomic units (OTUs) were identified by nifH sequence and distributed in different growth periods. There were five OTUs distributed in each sample at the same time, and the abundance and diversity of microorganisms in fruit period were much higher than those in other periods. Mainly four phyla were involved, among which Proteobacteria was the most abundant in all groups. CONCLUSIONS: In general, the present study investigated the abundance and characteristics of nitrogen-fixing microorganisms of rhizosheaths in different growth periods of S. pennata. It also may elucidate and indicate that the structure of nitrogen-fixing microorganisms of rhizosheaths in different growth periods of S. pennata had changed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA