Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 22(8): e3002739, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39137238

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) poses a significant threat due to its tendency to evade early detection, frequent metastasis, and the subsequent challenges in devising effective treatments. Processes that govern epithelial-mesenchymal transition (EMT) in PDAC hold promise for advancing novel therapeutic strategies. SAMD1 (SAM domain-containing protein 1) is a CpG island-binding protein that plays a pivotal role in the repression of its target genes. Here, we revealed that SAMD1 acts as a repressor of genes associated with EMT. Upon deletion of SAMD1 in PDAC cells, we observed significantly increased migration rates. SAMD1 exerts its effects by binding to specific genomic targets, including CDH2, encoding N-cadherin, which emerged as a driver of enhanced migration upon SAMD1 knockout. Furthermore, we discovered the FBXO11-containing E3 ubiquitin ligase complex as an interactor and negative regulator of SAMD1, which inhibits SAMD1 chromatin-binding genome-wide. High FBXO11 expression in PDAC is associated with poor prognosis and increased expression of EMT-related genes, underlining an antagonistic relationship between SAMD1 and FBXO11. In summary, our findings provide insights into the regulation of EMT-related genes in PDAC, shedding light on the intricate role of SAMD1 and its interplay with FBXO11 in this cancer type.


Asunto(s)
Carcinoma Ductal Pancreático , Transición Epitelial-Mesenquimal , Proteínas F-Box , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas , Receptores de LDL , Animales , Humanos , Cadherinas/metabolismo , Cadherinas/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Pronóstico , Receptores de LDL/genética , Receptores de LDL/metabolismo
2.
Nucleic Acids Res ; 52(13): 7590-7609, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38801077

RESUMEN

Acute myeloid leukemia (AML) is a hematological malignancy characterized by abnormal proliferation and accumulation of immature myeloid cells in the bone marrow. Inflammation plays a crucial role in AML progression, but excessive activation of cell-intrinsic inflammatory pathways can also trigger cell death. IRF2BP2 is a chromatin regulator implicated in AML pathogenesis, although its precise role in this disease is not fully understood. In this study, we demonstrate that IRF2BP2 interacts with the AP-1 heterodimer ATF7/JDP2, which is involved in activating inflammatory pathways in AML cells. We show that IRF2BP2 is recruited by the ATF7/JDP2 dimer to chromatin and counteracts its gene-activating function. Loss of IRF2BP2 leads to overactivation of inflammatory pathways, resulting in strongly reduced proliferation. Our research indicates that a precise equilibrium between activating and repressive transcriptional mechanisms creates a pro-oncogenic inflammatory environment in AML cells. The ATF7/JDP2-IRF2BP2 regulatory axis is likely a key regulator of this process and may, therefore, represent a promising therapeutic vulnerability for AML. Thus, our study provides new insights into the molecular mechanisms underlying AML pathogenesis and identifies a potential therapeutic target for AML treatment.


Asunto(s)
Inflamación , Leucemia Mieloide Aguda , Factor de Transcripción AP-1 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Factor de Transcripción AP-1/metabolismo , Factor de Transcripción AP-1/genética , Inflamación/genética , Inflamación/metabolismo , Línea Celular Tumoral , Factores de Transcripción Activadores/metabolismo , Factores de Transcripción Activadores/genética , Cromatina/metabolismo , Proliferación Celular , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Células HEK293 , Regulación Leucémica de la Expresión Génica , Multimerización de Proteína , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Unión al ADN
3.
Biology (Basel) ; 11(4)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35453756

RESUMEN

The unmethylated CpG island-binding protein SAMD1 is upregulated in many human cancer types, but its cancer-related role has not yet been investigated. Here, we used the hepatocellular carcinoma cell line HepG2 as a cancer model and investigated the cellular and transcriptional roles of SAMD1 using ChIP-Seq and RNA-Seq. SAMD1 targets several thousand gene promoters, where it acts predominantly as a transcriptional repressor. HepG2 cells with SAMD1 deletion showed slightly reduced proliferation, but strongly impaired clonogenicity. This phenotype was accompanied by the decreased expression of pro-proliferative genes, including MYC target genes. Consistently, we observed a decrease in the active H3K4me2 histone mark at most promoters, irrespective of SAMD1 binding. Conversely, we noticed an increase in interferon response pathways and a gain of H3K4me2 at a subset of enhancers that were enriched for IFN-stimulated response elements (ISREs). We identified key transcription factor genes, such as IRF1, STAT2, and FOSL2, that were directly repressed by SAMD1. Moreover, SAMD1 deletion also led to the derepression of the PI3K-inhibitor PIK3IP1, contributing to diminished mTOR signaling and ribosome biogenesis pathways. Our work suggests that SAMD1 is involved in establishing a pro-proliferative setting in hepatocellular carcinoma cells. Inhibiting SAMD1's function in liver cancer cells may therefore lead to a more favorable gene signature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA