Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Stomatol Oral Maxillofac Surg ; 122(4): 441-452, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33099018

RESUMEN

Malformations of the maxillofacial region has disturbing psychosocial effects and causes enormous socioeconomic concerns. The management of maxillofacial defects caused by congenital anomalies, trauma, osteoporotic fractures, periodontitis, or cancer treatment is challenging for oral and maxillofacial surgeons. Numerous approaches have been recommended for the managing of these deficiencies. The traditional treatment for maxillofacial defects or their repair is an intricate process by autologous bone grafts from the scapula, ribs, fibula, or iliac crest origins. Regenerative medicine is well thought-out as a perfect substitute approach for autologous bone grafts to renovate bone deficiencies. The use of stem cells has improved results and offered a technique to reconstruct craniofacial bone defects. The field of tissue engineering for the regeneration of maxillofacial needs integration of biochemical and biomaterial engineering aspects with cell transplantation to generate better-quality biomimetic scaffolds, prevascularize three-dimensional (3D) tissue structures, and engineer the composite interface of diverse facial tissues. In this review, we have discussed the application of different adult stem cells to repair oral and maxillofacial defects in animal models and clinical trials.


Asunto(s)
Medicina Regenerativa , Ingeniería de Tejidos , Animales , Trasplante Óseo , Peroné , Humanos , Células Madre
2.
J Environ Qual ; 30(2): 573-83, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11285919

RESUMEN

There is a necessity for improved physical understanding of solute transport processes in heterogeneous soil systems. In situ nondestructive techniques like time domain reflectometry (TDR) and fiber optic miniprobes (FOMPs) permit the collection of unique measurements of solute transport processes in soils for the purposes of model development and validation. This study examined the application of TDR and FOMPs to measure solute transport at various points laterally and at two depths in a heterogeneous clay-loam soil. A miscible displacement experiment was performed at a constant irrigation flux to examine the applicability of these probes to field soils. In their first application to a field soil, the FOMPs were successfully calibrated and performed well in measuring solute breakthrough curves. Two flow regimes were identified in the soil profile, the first where lateral spreading of the solute occurred in the surface horizon, followed by convergence into preferential flow pathways in the second transport zone. The measured transport response was heterogeneous with at least two identifiable vertical flow phases. It was demonstrated using transfer function modeling and data from a corresponding laboratory study that the FOMPs were measuring the slower phase, while the TDR probes captured a composite of the fast and slow phases. The combination of these two techniques may be a means to separate solute transport phases in heterogeneous media and relate laboratory column results to field studies.


Asunto(s)
Modelos Teóricos , Contaminantes del Suelo/análisis , Contaminantes del Agua/análisis , Tecnología de Fibra Óptica , Predicción , Fibras Ópticas , Solubilidad , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA