Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(38): 26230-26239, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28932830

RESUMEN

This work describes the preparation of the new lipophilic ionic liquid tetraoctyl-formamidinium bis(trifluoromethanesulfonyl) imide (TOFATFSI), which is miscible with lower alkanes. In particular, this work focuses on the electric behaviour of TOFATFSI in the particularly challenging highly apolar environment of supercritical CO2. The conductivity and relaxation phenomena are revealed through the analysis of the broadband electric spectra with a particular emphasis on the effect of temperature and CO2 uptake on the IL conductivity. It is found that temperature boosts the conductivity via an increase in the charge carrier mobility. Also, CO2 absorption affects both the conductivity and the permittivity of the material due to the presence of CO2-IL interactions that modulate the nanostructure and the size of the TOFATFSI aggregates, which increases both the mobility and the density of the charge carriers.

2.
Macromol Rapid Commun ; 37(14): 1228, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27432050

RESUMEN

Back Cover: Quaternary polymer electrolytes, containing PEO, LiTFSI, ionic liquid and ceramic filler, show higher limiting current density, conductivity and improved cycling performance in lithium metal/solid polymer electrolyte/LiFePO4 cells with respect to ternary electrolytes with either ionic liquid or ceramic filler. Further details can be found in the article by V. Sharova, G.-T. Kim, G. A. Giffin, A. Lex-Balducci,* and S. Passerini* on page 1188.

3.
Macromol Rapid Commun ; 37(14): 1188-93, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27000626

RESUMEN

In this work, the individual and combined effects of an ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and ceramic filler silicon dioxide on the thermal and electrochemical properties of poly(ethylene oxide) electrolytes have been investigated. The electrolyte containing both components has the lowest glass transition (-60 °C) and melting temperatures (27 °C), the highest conductivity at any investigated temperature, and the highest limiting current density (at 40 °C). This solid polymer electrolyte also exhibits the best long-term cycling performance in Li/LiFePO4 cells.


Asunto(s)
Líquidos Iónicos/química , Polietilenglicoles/química , Dióxido de Silicio/química , Conductividad Eléctrica , Técnicas Electroquímicas , Electrólitos/química , Temperatura
4.
Phys Chem Chem Phys ; 18(31): 21539-47, 2016 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-27426047

RESUMEN

The presence of oligoether functional groups in the cations of ionic liquids has a significant effect on Li(+) coordination. In this work, a series of N-alkoxylether-N-methyl pyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids were synthesized to investigate the effect of the number of ether units on Li(+) coordination and transport. The nature of Li(+) coordination was elucidated through the combination of Raman spectroscopy and heteronuclear Overhauser effect NMR spectroscopy. The presence of a simple ether in the cation side chain results in improved physical properties as compared to N-alkyl-N-methyl pyrrolidinium-based ionic liquids, but does not significantly affect Li(+) coordination possibly due to steric effects of the pyrrolidinium ring. Increasing the number of ethylene oxide units in the side chain results in the progressive displacement of IL anions in the first Li(+) solvation shell by IL cations due to the preferential coordination of Li(+) by the ether oxygen atoms. The apparent transference number of the IL cation decreases and that of the IL anion increases with increasing side chain length. Unfortunately, this does not result in an increase in the Li transference. Nonetheless, the results of this study have important implications for electrolyte systems where the desolvation of the metal cation from the IL anions is the limiting factor in the charge transport mechanism.

5.
Phys Chem Chem Phys ; 17(46): 31125-39, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26538312

RESUMEN

Understanding the structure-property relationships and the phenomena responsible for ion conduction is one of the keys in the design of novel ionomers with improved properties. In this report, the morphology and the mechanism of ion exchange in a model anion exchange membrane (AEM), poly(vinyl benzyl trimethyl ammonium bromide)-block-poly(methylbutylene) ([PVBTMA][Br]-b-PMB), is investigated with small angle X-ray scattering, high-resolution thermogravimetry, modulated differential scanning calorimetry, dynamic mechanical analysis, and broadband electrical spectroscopy. The hyper-morphology of the material consists of hydrophilic domains characterized by stacked sides of [PVBTMA][Br] which are sandwiched between "spaghetti-like" hydrophobic cylindrical parallel domains of the PMB block. The most important interactions in the hydrophilic domains occur between the dipoles of ammonium bromide ion pairs in the side chains of adjacent chains. A reordering of the ion pair dipoles is responsible for a disorder-order transition (Tδ) at high temperature, observed here for the first time in AEMs, which results in a dramatic decrease of the ionic conductivity. The overall mechanism of long range charge transfer, deduced from a congruent picture of all of the results, involves two distinct ion conduction pathways. In these pathways, hydration and the motion of the ionic side groups are crucial to the conductivity of the AEM. Unlike the typical perfluorinated sulfonated proton-conducting polymer, the segmental motion of the backbone is negligible.

6.
ChemSusChem ; : e202401142, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39387344

RESUMEN

The development of effective recycling technologies is essential for the recovery and reuse of the raw materials required for lithium-ion batteries (LIBs). Future recycling processes depend on accessible information, necessitating the implementation of a digital battery passport. The European battery regulation mandates the use of a machine-readable identifier physically attached to the batteries for accessing digital information. Since externally applied optical labels are vulnerable to mechanical damage, technologies for identification without these restrictions could be beneficial. This study demonstrates that magnetic supraparticles (SPs) can be used for contactless identification of lithium nickel manganese cobalt oxide (NMC) battery pouch cells via magnetic particle spectroscopy (MPS) and that multiple pouch cells can be discriminated based on their specific magnetic code. A comparison of three independent model scenarios revealed that the detection of SPs and the impact on cell performance are dependent on the integration location. The results validate the concept of magnetic identification in metallic environments with MPS as an alternative to optical labeling methods. This study provides a foundation for the development of a new selective labeling and identification technology for batteries, with the potential to facilitate recycling and contribute to a more sustainable future.

7.
J Am Chem Soc ; 135(2): 822-34, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23249300

RESUMEN

This study focuses on changes in the structure of ionomer membranes, provided by the 3M Fuel Cells Component Group, as a function of the equivalent weight (EW) and the relationship between the structure and the properties of the membrane. Wide-angle X-ray diffraction results showed evidence of both non-crystalline and crystalline ordered hydrophobic regions in all the EW membranes except the 700 EW membrane. The spectral changes evident in the vibrational spectra of the 3M membranes can be associated with two major phenomena: (1) dissociation of the proton from the sulfonic acid groups even in the presence of small amounts of water; and (2) changes in the conformation or the degree of crystallinity of the poly(tetrafluoroethylene) hydrophobic domains both as a function of EW and membrane water content. All the membranes, regardless of EW, are thermally stable up to 360 °C. The wet membranes have conductivities between 7 and 20 mS/cm at 125 °C. In this condition, the conductivity values follow VTF behavior, which suggests that the proton migration occurs via proton exchange processes between delocalization bodies (DBs) that are facilitated by the dynamics of the host polymer. The conductivity along the interface between the hydrophobic and hydrophilic domains makes a larger contribution in the smaller EW membranes likely due to the existence of a greater number of interfaces in the membrane. The larger crystalline domains present in the higher EW membranes provide percolation pathways for charge migration between DBs, which reduces the probability of charge transfer along the interface. Therefore, at higher EWs although there is charge migration along the interface within the hydrophobic-hydrophilic domains, the exchange of protons between different DBs is likely the rate-limiting step of the overall conduction process.

8.
J Am Chem Soc ; 134(46): 19099-107, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23102554

RESUMEN

The thermal, mechanical, and electric properties of hybrid membranes based on Nafion that contain a [(ZrO(2))·(Ta(2)O(5))(0.119)] "core-shell" nanofiller are elucidated. DSC investigations reveal the presence of four endothermic transitions between 50 and 300 °C. The DMA results indicate improved mechanical stability of the hybrid materials. The DSC and DMA results are consistent with our previous suggestion of dynamic R-SO(3)H···[ZrTa] cross-links in the material. These increase the thermal stability of the -SO(3)H groups and the temperature of thermal relaxation events occurring in hydrophobic domains of Nafion. The broadband electrical spectroscopic analysis reveals two electric relaxations associated with the material's interfacial (σ(IP)) and bulk proton conductivities (σ(EP)). The wet [Nafion/(ZrTa)(1.042)] membrane has a conductivity of 7.0 × 10(-2) S cm(-1) at 115 °C, while Nafion has a conductivity of 3.3 × 10(-2) S cm(-1) at the same temperature and humidification conditions. σ(EP) shows VTF behavior, suggesting that the long-range conductivity is closely related to the segmental motion of the Nafion host matrix. Long-range conduction (σ(EP)) occurs when the dynamics of the fluorocarbon matrix induces contact between different delocalization bodies (DB), which results in proton exchange processes between these DBs.

9.
Phys Chem Chem Phys ; 13(26): 12146-54, 2011 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-21594297

RESUMEN

Polybenzimidazoles (PBIs) are among the polymers of choice to prepare membranes for high temperature polymer fuel cells. Poly-2,2'(2,6-pyridine)-5,5'-bibenzimidazole (PBI5N), doped with H(3)PO(4), and acid-doped PBI5N containing 10 wt% of imidazole-functionalized silica membranes were studied with thermogravimetric analysis, differential scanning calorimetry, dynamic-mechanical analysis, infrared spectroscopy, and broadband electric spectroscopy to examine the structure-property relationships. Key results show that: (1) doped PBI5N membranes show thermal decomposition starting at 120 °C, while pristine PBI5N is stable up to 300 °C; (2) the presence of filler increases the acid uptake and decreases the crystallinity of PBI5N; (3) the addition of phosphoric acid reduces the mechanical properties of the membrane, while the addition of filler has the opposite effect; (4) acid-doped membranes have conductivity values on the order of 10(-2)-10(-3) S cm(-1); and (5) membranes exhibit a Vogel-Tamman-Fulcher (VTF) type proton conduction mechanism, where proton hopping is coupled with the segmental motion of the polymer chain. Infrared spectroscopy combined with DFT quantum mechanical calculations was used to assign the experimental spectrum of PBI5N.

10.
ChemSusChem ; 13(22): 5962-5971, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-32969581

RESUMEN

The successful implementation of an aqueous-based electrode manufacturing process for nickel-rich cathode active materials is challenging due to their high water sensitivity. In this work, the surface of LiNi0.8 Co0.15 Al0.05 O2 (NCA) was modified with a lithium phosphate coating to investigate its ability to protect the active material during electrode production. The results illustrate that the coating amount is crucial and a compromise has to be made between protection during electrode processing and sufficient electronic conductivity through the particle surface. Cells with water-based electrodes containing NCA with an optimized amount of lithium phosphate had a slightly lower specific discharge capacity than cells with conventional N-methyl-2-pyrrolidone-based electrodes. Nonetheless, the cells with optimized water-based electrodes could compete in terms of cycle life.

11.
ACS Appl Mater Interfaces ; 12(32): 36695-36705, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32664716

RESUMEN

The cycling stability of flexible electrochromic devices (ECDs) under humid atmospheres is limited by irreversible indium tin oxide (ITO) reduction. A strategy to limit this degradation was developed and tested for model ECDs based on a sidechain-modified poly(3,4-ethylene dioxythiophene) (PEDOT) derivative and Prussian blue (PB). This work reveals that the cycling stability is reduced by dissolution of the ITO thin films and formation of metallic indium particles on the surface of the ITO layers. The ITO degradation strongly depends on the applied electrode potentials in combination with moisture ingress into the ECDs. To avoid ITO reduction in ECDs, efforts were made to adjust the electrode potentials. ECDs equipped with an auxiliary reference electrode were set up to gather knowledge on the actual electrode potentials. By adjusting the electrode charge density ratio, it was possible to narrow the overall cell voltage window to an extent in which irreversible ITO reduction no longer occurs. Detailed investigation of ECDs with the optimized cell configuration (charge density ratio) showed that the overall device performance with regard to visible light transmittance change and response time is not impaired and that the cycling stability under humid atmosphere (90% rH) is dramatically improved. Thus, the proposed strategy offers an excellent perspective for the commercialization of flexible ECDs upon their enhanced durability.

12.
Chem Commun (Camb) ; 54(34): 4278-4281, 2018 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-29632947

RESUMEN

In binary ionic liquid/Li salt mixtures with the novel asymmetric anion FTFSI, electrophoretic mobility µi values of all ion species were determined using electrophoretic NMR. Li was determined to migrate in negatively charged Li-anion clusters towards the anode. This vehicular transport mechanism was shown to have decreasing relevance at elevated salt concentrations.

13.
ChemSusChem ; 11(12): 1981-1989, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29282874

RESUMEN

The use of highly concentrated ionic liquid-based electrolytes results in improved rate capability and capacity retention at 20 °C compared to Li+ -dilute systems in Li-metal and Li-ion cells. This work explores the connection between the bulk electrolyte properties and the molecular organization to provide insight into the concentration dependence of the Li+ transport mechanisms. Below 30 mol %, the Li+ -containing species are primarily smaller complexes (one Li+ cation) and the Li+ ion transport is mostly derived from the vehicular transport. Above 30 mol %, where the viscosity is substantially higher and the conductivity lower, the Li+ -containing species are a mix of small and large complexes (one and more than one Li+ cation, respectively). The overall conduction mechanism likely changes to favor structural diffusion through the exchange of anions in the first Li+ solvation shell. The good rate performance is likely directly influenced by the presence of larger Li+ complexes, which promote Li+ -ion transport (as opposed to Li+ -complex transport) and increase the Li+ availability at the electrode.

14.
15.
ChemSusChem ; 6(11): 2157-60, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24106158

RESUMEN

GHz broadband electrical spectroscopy (G-BES) is adopted to investigate the molecular relaxations and interactions occurring within the system in an oxygen- and water-free atmosphere in the 300 kHz-20 GHz and -40 to 250 °C frequency and temperature ranges, respectively. A new electrolyte for magnesium secondary batteries that can transfer magnesium ions efficiently is presented. This electrolyte is based on polyethylene glycol 400 and a polymeric form of δ-MgCl2 . The information obtained by G-BES is crucial for studying the conduction mechanism of these new electrolytes.


Asunto(s)
Conductividad Eléctrica , Magnesio/química , Polietilenglicoles/química , Análisis Espectral , Temperatura
16.
ChemSusChem ; 5(9): 1758-66, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22807005

RESUMEN

Two types of new nanocomposite proton-exchange membranes, consisting of functionalized and pristine nanoparticles of silica and silicone rubber (SR) embedded in a polytetrafluoroethylene (PTFE) matrix, were prepared. The membrane precursor was obtained from a mechanical rolling process, and the SiO2 nanoparticles were functionalized by soaking the membranes in a solution of 2-(4-chlorosulfonylphenyl)ethyl trichlorosilane (CSPhEtCS). The membranes exhibit a highly compact morphology and a lack of fibrous PTFE. At 125 °C, the membrane containing the functionalized nanoparticles has an elastic modulus (2.2 MPa) that is higher than that of pristine Nafion (1.28 MPa) and a conductivity of 3.6×10⁻³  S cm⁻¹ despite a low proton-exchange capacity (0.11 meq g⁻¹). The good thermal and mechanical stability and conductivity at T>100 °C make these membranes a promising low-cost material for application in proton-exchange membrane fuel cells operating at temperatures higher than 100 °C.


Asunto(s)
Membranas Artificiales , Nanocompuestos/química , Politetrafluoroetileno/química , Protones , Dióxido de Silicio/química , Fenómenos Mecánicos , Porosidad , Elastómeros de Silicona/química , Temperatura , Agua/química
17.
ChemSusChem ; 5(12): 2451-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23019172

RESUMEN

An extensive morphological and structural study of two bimetallic "core-shell" carbon nitride nano-electrocatalysts with active sites based on Pt and Ni or on Pt and Fe is reported. The core-shell electrocatalysts are obtained by the pyrolysis of a precursor obtained by decorating a support composed of conducting particles with a hybrid inorganic-organic material. The electrocatalysts were investigated by high-resolution TEM, powder X-ray diffraction, and µ-Raman spectroscopy. The morphological and structural information presented here provides 1) insight into the microscopic features, affecting the electrochemical performance of the electrocatalyst materials determined in both ex situ measurements and single-cell configurations; and 2) an opportunity to study the effect of the different precursor chemistries on the structure and morphology of the bimetallic core-shell carbon nitride nano-electrocatalysts.


Asunto(s)
Hierro/química , Nanopartículas del Metal/química , Níquel/química , Nitrilos/síntesis química , Platino (Metal)/química , Catálisis , Técnicas Electroquímicas , Microscopía Electrónica de Transmisión , Nitrilos/química , Espectrometría Raman , Propiedades de Superficie , Difracción de Rayos X
18.
J Phys Chem B ; 115(46): 13519-25, 2011 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21999722

RESUMEN

Conformational changes in polymer films exposed to high-pressure CO(2) have been investigated with Fourier transform infrared (FT-IR) spectroscopy. The experimental setup, based on a custom-made stainless steel optical cell with CaF(2) windows, allows measurements in a CO(2) environment for pressures up to 6 MPa, in a temperature range from 293 to 353 K and in the mid-infrared (1000-4000 cm(-1)). Poly(methyl methacrylate) (PMMA), a polymer with a side group (C-type), was studied to monitor the spectral changes as a function of CO(2) pressure and was compared to poly(D,L-lactic-co-glycolic acid) (PLGA), a polymer without a side group (B-type). By monitoring the characteristic carbonyl bands, conformational changes that occur due to molecular interactions between the high-pressure CO(2) and the polymers were explored at a constant pressurization rate (0.02 MPa/min) and temperature. Spectral changes are observed only for PMMA, where the vibrational band at 1680 cm(-1) disappears with increasing pressure. The spectra of PLGA do not show any significant change in the presence of high pressure CO(2) in the investigated range. The behavior of the absorbance peak as a function of pressure and temperature highlights the presence of dynamic cross-links (DCs) between the side groups of PMMA films obtained by solvent casting below the glass transition temperature of the polymer. The spectral features are correlated using a model that accounts for CO(2) diffusion and the relaxation kinetics of the polymer chains in the thin film. The disappearance of the vibrational band attributed to the DCs for PMMA is related to the glass transition temperature, and a retrograde vitrification phenomenon is observed. This approach can be considered a useful alternative to magnetic suspended balance for the study of polymer-gas systems.

19.
J Phys Chem B ; 115(29): 9014-21, 2011 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21678893

RESUMEN

Broadband electric spectroscopy (BES) is a technique that shows promise in studying the interactions of dense or supercritical gases with polymers, particularly with respect to chain mobility. Polymers that are treated with dense gases show a reduction in the viscosity, glass transition, and melting temperature. A high pressure cell for BES has been constructed that can be used from ambient temperature and pressure to 353 K and 15 MPa and over a frequency range from 20 Hz to 1 MHz. In the past, the dielectric constant of CO(2) was determined by measurements at only one or two frequency values. New instrumentation and technology allow this experiment to be expanded to cover a wider frequency range. BES measurements of CO(2) do not show any relaxation peaks in the permittivity from 20 Hz to 1 MHz and 1 to 6 MPa. By these measurements, the CO(2) dielectric constant was evaluated between 0.1 and 6 MPa. Cell testing with poly(vinyl chloride) (PVC) at 323 K and CO(2) pressures from 0.1 to 13 MPa indicate an increase in the chain segmental motion at high pressures resulting from a reduction in the glass transition temperature of the PVC-CO(2) system due to plasticization by CO(2).

20.
J Phys Chem B ; 113(49): 15914-20, 2009 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-19904963

RESUMEN

The NH(2)(+) stretching modes of secondary amine salts have been previously studied, but the band assignments are inconsistent between the various studies. This paper assigns characteristic NH(2)(+) group frequencies between approximately 2500 and 2400 cm(-1). Crystal structures of four diamine salts are reported here. Vibrational frequencies were calculated with the B3LYP hybrid Hartree-Fock/density functional method and the 6-31G(d) split-valence plus polarization basis set, and the results are in agreement with the experimental frequencies. Deuterium dilution experiments result in a group of sharply featured bands between the NH(2)(+) and the ND(2)(+) stretching bands. These bands, located between 2200 and 2100 cm(-1), are attributed to modes that contain contributions from coupled N-H and N-D stretching motions.


Asunto(s)
Diaminas/química , Sales (Química)/química , Vibración , Cristalización , Cristalografía por Rayos X , Ácido Bromhídrico/química , Ácido Clorhídrico/química , Enlace de Hidrógeno , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA