Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38828852

RESUMEN

The cellular and genetic networks that contribute to the development of the zeugopod (radius and ulna of the forearm, tibia and fibula of the leg) are not well understood, although these bones are susceptible to loss in congenital human syndromes and to the action of teratogens such as thalidomide. Using a new fate-mapping approach with the Chameleon transgenic chicken line, we show that there is a small contribution of SHH-expressing cells to the posterior ulna, posterior carpals and digit 3. We establish that although the majority of the ulna develops in response to paracrine SHH signalling in both the chicken and mouse, there are differences in the contribution of SHH-expressing cells between mouse and chicken as well as between the chicken ulna and fibula. This is evidence that, although zeugopod bones are clearly homologous according to the fossil record, the gene regulatory networks that contribute to their development and evolution are not fixed.


Asunto(s)
Animales Modificados Genéticamente , Pollos , Proteínas Hedgehog , Animales , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Pollos/genética , Ratones , Evolución Biológica , Embrión de Pollo , Cúbito , Regulación del Desarrollo de la Expresión Génica , Peroné/metabolismo , Radio (Anatomía)/metabolismo , Humanos , Extremidades/embriología
2.
BMC Biotechnol ; 18(1): 82, 2018 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-30594166

RESUMEN

BACKGROUND: The global market for protein drugs has the highest compound annual growth rate of any pharmaceutical class but their availability, especially outside of the US market, is compromised by the high cost of manufacture and validation compared to traditional chemical drugs. Improvements in transgenic technologies allow valuable proteins to be produced by genetically-modified animals; several therapeutic proteins from such animal bioreactors are already on the market after successful clinical trials and regulatory approval. Chickens have lagged behind mammals in bioreactor development, despite a number of potential advantages, due to the historic difficulty in producing transgenic birds, but the production of therapeutic proteins in egg white of transgenic chickens would substantially lower costs across the entire production cycle compared to traditional cell culture-based production systems. This could lead to more affordable treatments and wider markets, including in developing countries and for animal health applications. RESULTS: Here we report the efficient generation of new transgenic chicken lines to optimize protein production in eggs. As proof-of-concept, we describe the expression, purification and functional characterization of three pharmaceutical proteins, the human cytokine interferon α2a and two species-specific Fc fusions of the cytokine CSF1. CONCLUSION: Our work optimizes and validates a transgenic chicken system for the cost-effective production of pure, high quality, biologically active protein for therapeutics and other applications.


Asunto(s)
Animales Modificados Genéticamente/genética , Biotecnología/métodos , Pollos/genética , Citocinas/genética , Animales , Animales Modificados Genéticamente/metabolismo , Reactores Biológicos/economía , Biotecnología/economía , Pollos/metabolismo , Citocinas/economía , Citocinas/metabolismo , Humanos , Interferón-alfa/economía , Interferón-alfa/genética , Interferón-alfa/metabolismo , Factor Estimulante de Colonias de Macrófagos/economía , Factor Estimulante de Colonias de Macrófagos/genética , Factor Estimulante de Colonias de Macrófagos/metabolismo , Proteínas Recombinantes/economía , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Development ; 141(16): 3255-65, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25063453

RESUMEN

We have generated the first transgenic chickens in which reporter genes are expressed in a specific immune cell lineage, based upon control elements of the colony stimulating factor 1 receptor (CSF1R) locus. The Fms intronic regulatory element (FIRE) within CSF1R is shown to be highly conserved in amniotes and absolutely required for myeloid-restricted expression of fluorescent reporter genes. As in mammals, CSF1R-reporter genes were specifically expressed at high levels in cells of the macrophage lineage and at a much lower level in granulocytes. The cell lineage specificity of reporter gene expression was confirmed by demonstration of coincident expression with the endogenous CSF1R protein. In transgenic birds, expression of the reporter gene provided a defined marker for macrophage-lineage cells, identifying the earliest stages in the yolk sac, throughout embryonic development and in all adult tissues. The reporter genes permit detailed and dynamic visualisation of embryonic chicken macrophages. Chicken embryonic macrophages are not recruited to incisional wounds, but are able to recognise and phagocytose microbial antigens.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Macrófagos/citología , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Aves , Linaje de la Célula , Pollos , Células Dendríticas/citología , Genes Reporteros , Técnicas Genéticas , Sistema Inmunológico , Intrones , Datos de Secuencia Molecular , Fagocitosis , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Transgenes , Saco Vitelino/fisiología
4.
Front Immunol ; 14: 1273661, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954617

RESUMEN

Conventional dendritic cells (cDCs) are antigen-presenting cells (APCs) that play a central role in linking innate and adaptive immunity. cDCs have been well described in a number of different mammalian species, but remain poorly characterised in the chicken. In this study, we use previously described chicken cDC specific reagents, a novel gene-edited chicken line and single-cell RNA sequencing (scRNAseq) to characterise chicken splenic cDCs. In contrast to mammals, scRNAseq analysis indicates that the chicken spleen contains a single, chemokine receptor XCR1 expressing, cDC subset. By sexual maturity the XCR1+ cDC population is the most abundant mononuclear phagocyte cell subset in the chicken spleen. scRNAseq analysis revealed substantial heterogeneity within the chicken splenic XCR1+ cDC population. Immature MHC class II (MHCII)LOW XCR1+ cDCs expressed a range of viral resistance genes. Maturation to MHCIIHIGH XCR1+ cDCs was associated with reduced expression of anti-viral gene expression and increased expression of genes related to antigen presentation via the MHCII and cross-presentation pathways. To visualise and transiently ablate chicken XCR1+ cDCs in situ, we generated XCR1-iCaspase9-RFP chickens using a CRISPR-Cas9 knockin transgenesis approach to precisely edit the XCR1 locus, replacing the XCR1 coding region with genes for a fluorescent protein (TagRFP), and inducible Caspase 9. After inducible ablation, the chicken spleen is initially repopulated by immature CD1.1+ XCR1+ cDCs. XCR1+ cDCs are abundant in the splenic red pulp, in close association with CD8+ T-cells. Knockout of XCR1 prevented this clustering of cDCs with CD8+ T-cells. Taken together these data indicate a conserved role for chicken and mammalian XCR1+ cDCs in driving CD8+ T-cells responses.


Asunto(s)
Linfocitos T CD8-positivos , Pollos , Animales , Presentación de Antígeno , Células Dendríticas , Reactividad Cruzada , Mamíferos
5.
Development ; 135(13): 2289-99, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18508860

RESUMEN

The outgrowth of the vertebrate tail is thought to involve the proliferation of regionalised stem/progenitor cell populations formed during gastrulation. To follow these populations over extended periods, we used cells from GFP-positive transgenic chick embryos as a source for donor tissue in grafting experiments. We determined that resident progenitor cell populations are localised in the chicken tail bud. One population, which is located in the chordoneural hinge (CNH), contributes descendants to the paraxial mesoderm, notochord and neural tube, and is serially transplantable between embryos. A second population of mesodermal progenitor cells is located in a separate dorsoposterior region of the tail bud, and a corresponding population is present in the mouse tail bud. Using heterotopic transplantations, we show that the fate of CNH cells depends on their environment within the tail bud. Furthermore, we show that the anteroposterior identity of tail bud progenitor cells can be reset by heterochronic transplantation to the node region of gastrula-stage chicken embryos.


Asunto(s)
Neuronas/metabolismo , Células Madre/metabolismo , Cola (estructura animal)/embriología , Cola (estructura animal)/metabolismo , Animales , Animales Modificados Genéticamente , Recuento de Células , Diferenciación Celular , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Neuronas/citología , Trasplante de Células Madre , Células Madre/citología , Cola (estructura animal)/citología
6.
EMBO Rep ; 5(7): 728-33, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15192698

RESUMEN

An effective method for genetic modification of chickens has yet to be developed. An efficient technology, enabling production of transgenic birds at high frequency and with reliable expression of transgenes, will have many applications, both in basic research and in biotechnology. We investigated the efficiency with which lentiviral vectors could transduce the chicken germ line and examined the expression of introduced reporter transgenes. Ten founder cockerels transmitted the vector to between 4% and 45% of their offspring and stable transmission to the G2 generation was demonstrated. Analysis of expression of reporter gene constructs in several transgenic lines showed a conserved expression profile between individuals that was maintained after transmission through the germ line. These data demonstrate that lentiviral vectors can be used to generate transgenic lines with an efficiency in the order of 100-fold higher than any previously published method, with no detectable silencing of transgene expression between generations.


Asunto(s)
Lentivirus/genética , Animales , Animales Modificados Genéticamente , Southern Blotting , Western Blotting , Embrión de Pollo , Pollos , ADN/metabolismo , Femenino , Técnicas de Transferencia de Gen , Genes Reporteros , Técnicas Genéticas , Vectores Genéticos , Masculino , Modelos Genéticos , Reacción en Cadena de la Polimerasa , Distribución Tisular , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA