Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Asian Nat Prod Res ; 25(1): 75-84, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35249434

RESUMEN

This study aimed to identify human cytosolic sulfotransferases (SULTs) that are capable of mediating hyperoside sulfation and examine the impact of genetic polymorphisms on their sulfating activity. Of the thirteen known human SULTs analyzed, five (1A1, 1A2, 1A3, 1C2, and 1C4) displayed sulfating activity toward hyperoside. Kinetic parameters of SULT1C4 that showed the strongest sulfating activity were determined. Ten SULT1C4 allozymes previously prepared were shown to display differential sulfating activities toward hyperoside, revealing clearly the functional impact of SULT1C4 genetic polymorphisms. These findings provided a robust biochemical foundation for further studies on the metabolism of hyperoside by sulfation.


Asunto(s)
Sulfatos , Sulfotransferasas , Humanos , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Sulfatos/metabolismo , Isoenzimas , Células Hep G2 , Células CACO-2 , Polimorfismo Genético
2.
Planta Med ; 87(6): 498-506, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33572003

RESUMEN

Radix Bupleuri is one of the most widely used herbal medicines in China for the treatment of fever, pain, and/or chronic inflammation. Quercitrin, epicatechin, and rutin, the flavonoids present in Radix Bupleuri, have been reported to display anti-inflammatory, antitumor, and antioxidant biological activities among others. Sulfation has been reported to play an important role in the metabolism of flavonoids. In this study, we aimed to systematically identify the human cytosolic sulfotransferase enzymes that are capable of catalyzing the sulfation of quercitrin, epicatechin, and rutin. Of the thirteen known human cytosolic sulfotransferases, three (cytosolic sulfotransferase 1A1, cytosolic sulfotransferase 1C2, and cytosolic sulfotransferase 1C4) displayed sulfating activity toward quercitrin, three (cytosolic sulfotransferase 1A1, cytosolic sulfotransferase 1A3, and cytosolic sulfotransferase 1C4) displayed sulfating activity toward epicatechin, and six (cytosolic sulfotransferase 1A1, cytosolic sulfotransferase 1A2, cytosolic sulfotransferase 1A3, cytosolic sulfotransferase 1B1, cytosolic sulfotransferase 1C4, and cytosolic sulfotransferase 1E1) displayed sulfating activity toward rutin. The kinetic parameters of the cytosolic sulfotransferases that showed the strongest sulfating activities were determined. To investigate the effects of genetic polymorphisms on the sulfation of quercitrin, epicatechin, and rutin, individual panels of cytosolic sulfotransferase allozymes previously prepared were analyzed and shown to display differential sulfating activities toward each of the three flavonoids. Taken together, these results provided a biochemical basis underlying the metabolism of quercitrin, epicatechin, and rutin through sulfation in humans.


Asunto(s)
Catequina/química , Quercetina/química , Rutina/química , Sulfotransferasas/química , China , Citosol , Humanos , Polimorfismo Genético , Quercetina/análogos & derivados , Sulfatos , Sulfotransferasas/genética
3.
Pharmacogenet Genomics ; 29(5): 99-105, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31145702

RESUMEN

OBJECTIVES: Phenylephrine and salbutamol are drugs that are used widely to treat diseases/disorders, such as nasal congestion, hypotension, and asthma, in individuals of different age groups. Human cytosolic sulfotransferase (SULT) SULT1A3 has been shown to be critically involved in the metabolism of these therapeutic agents. This study was carried out to investigate the effects of single nucleotide polymorphisms of human SULT1A3 and SULT1A4 genes on the sulfation of phenylephrine and salbutamol by SULT1A3 allozymes. MATERIALS AND METHODS: Wild-type and SULT1A3 allozymes, prepared previously by site-directed mutagenesis in conjunction with bacterial expression and affinity purification, were analyzed for sulfating activity using an established assay procedure. RESULTS: Purified SULT1A3 allozymes, in comparison with the wild-type enzyme, showed differential sulfating activities toward phenylephrine and salbutamol. Kinetic studies showed further significant variations in their substrate-binding affinity and catalytic activity toward phenylephrine and salbutamol. CONCLUSION: The results obtained showed clearly the differential enzymatic characteristics of SULT1A3 allozymes in mediating the sulfation of phenylephrine and salbutamol. This information may contribute toward a better understanding of the pharmacokinetics of these two drugs in individuals with distinct SULT1A3 and/or SULT1A4 genotypes.


Asunto(s)
Albuterol/metabolismo , Arilsulfotransferasa/genética , Fenilefrina/metabolismo , Sulfotransferasas/genética , Albuterol/uso terapéutico , Arilsulfotransferasa/química , Arilsulfotransferasa/metabolismo , Asma/tratamiento farmacológico , Asma/genética , Genotipo , Humanos , Hipotensión/tratamiento farmacológico , Hipotensión/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Mutagénesis Sitio-Dirigida , Fenilefrina/uso terapéutico , Polimorfismo de Nucleótido Simple/genética , Sulfatos/metabolismo , Sulfotransferasas/química , Sulfotransferasas/metabolismo
4.
Biochem Cell Biol ; 96(5): 655-662, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29671343

RESUMEN

The cytosolic sulfotransferase (SULT) SULT2A1 is known to mediate the sulfation of DHEA as well as some other hydroxysteroids such as pregnenolone. The present study was designed to investigate how genetic polymorphisms of the human SULT2A1 gene may affect the sulfation of DHEA and pregnenolone. Online databases were systematically searched to identify human SULT2A1 single nucleotide polymorphisms (SNPs). Of the 98 SULT2A1 non-synonymous coding SNPs identified, seven were selected for further investigation. Site-directed mutagenesis was used to generate cDNAs encoding these seven SULT2A1 allozymes, which were expressed in BL21 Escherichia coli cells and purified by glutathione-Sepharose affinity chromatography. Enzymatic assays revealed that purified SULT2A1 allozymes displayed differential sulfating activity toward both DHEA and pregnenolone. Kinetic analyses showed further differential catalytic efficiency and substrate affinity of the SULT2A1 allozymes, in comparison with wild-type SULT2A1. These findings provided useful information concerning the effects of genetic polymorphisms on the sulfating activity of SULT2A1 allozymes.


Asunto(s)
Deshidroepiandrosterona/química , Polimorfismo de Nucleótido Simple , Pregnenolona/química , Sulfotransferasas/química , Sulfotransferasas/genética , Humanos , Cinética , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes , Sulfotransferasas/metabolismo
5.
J Biochem ; 170(3): 419-426, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33950190

RESUMEN

Doxorubicin is a chemotherapeutic drug widely utilized in cancer treatment. An enzyme critical to doxorubicin metabolism is the cytosolic sulfotransferase (SULT) SULT1C4. This study investigated the functional impact of SULT1C4 single nucleotide polymorphisms (SNPs) on the sulfation of doxorubicin by SULT1C4 allozymes. A comprehensive database search was performed to identify various SULT1C4 SNPs. Ten nonsynonymous SULT1C4 SNPs were selected, and the corresponding cDNAs, packaged in pGEX-2TK expression vector, were generated via site-directed mutagenesis. Respective SULT1C4 allozymes were bacterially expressed and purified by affinity chromatography. Purified SULT1C4 allozymes, in comparison with the wild-type enzyme, were analysed for sulphating activities towards doxorubicin and 4-nitrophenol, a prototype substrate. Results obtained showed clearly differential doxorubicin-sulphating activity of SULT1C4 allozymes, implying differential metabolism of doxorubicin through sulfation in individuals with distinct SULT1C4 genotypes.


Asunto(s)
Doxorrubicina/metabolismo , Polimorfismo de Nucleótido Simple , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Citosol/metabolismo , Genotipo , Humanos , Isoenzimas/metabolismo , Cinética , Mutagénesis Sitio-Dirigida , Nitrofenoles/metabolismo , Sulfatos/metabolismo
6.
Pharmacol Rep ; 71(2): 257-265, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30822619

RESUMEN

BACKGROUND: Non-opioid and opioid analgesics, as over-the-counter or prescribed medications, are widely used for the management of a diverse array of pathophysiological conditions. Previous studies have demonstrated the involvement of human cytosolic sulfotransferase (SULT) SULT1A1 in the sulfation of acetaminophen, O-desmethylnaproxen (O-DMN), and tapentadol. The current study was designed to investigate the impact of single nucleotide polymorphisms (SNPs) of the human SULT1A1 gene on the sulfation of these analgesic compounds by SULT1A1 allozymes. METHODS: Human SULT1A1 genotypes were identified by database search. cDNAs corresponding to nine SULT1A1 nonsynonymous missense coding SNPs (cSNPs) were generated by site-directed mutagenesis. Recombinant wild-type and SULT1A1 allozymes were bacterially expressed and affinity-purified. Purified SULT1A1 allozymes were analyzed for sulfation activity using an established assay procedure. RESULTS: Compared with the wild-type enzyme, SULT1A1 allozymes were shown to display differential sulfating activities toward three analgesic compounds, acetaminophen, O-desmethylnaproxen (O-DMN), and tapentadol, as well as the prototype substrate 4NP. CONCLUSION: Results obtained indicated clearly the impact of genetic polymorphisms on the drug-sulfation activity of SULT1A1 allozymes. Such information may contribute to a better understanding about the differential metabolism of acetaminophen, O-DMN, and tapentadol in individuals with different SULT1A1 genotypes.


Asunto(s)
Acetaminofén/metabolismo , Arilsulfotransferasa/genética , Naproxeno/análogos & derivados , Tapentadol/metabolismo , Analgésicos no Narcóticos/metabolismo , Analgésicos Opioides/metabolismo , Citosol/metabolismo , Escherichia coli/citología , Genotipo , Humanos , Isoenzimas , Mutagénesis Sitio-Dirigida , Naproxeno/metabolismo , Polimorfismo de Nucleótido Simple , Sulfatos/metabolismo
7.
Biochem Pharmacol ; 151: 104-113, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29524394

RESUMEN

Previous studies have demonstrated the involvement of sulfoconjugation in the metabolism of catecholamines and serotonin. The current study aimed to clarify the effects of single nucleotide polymorphisms (SNPs) of human SULT1A3 and SULT1A4 genes on the enzymatic characteristics of the sulfation of dopamine, epinephrine, norepinephrine and serotonin by SULT1A3 allozymes. Following a comprehensive search of different SULT1A3 and SULT1A4 genotypes, twelve non-synonymous (missense) coding SNPs (cSNPs) of SULT1A3/SULT1A4 were identified. cDNAs encoding the corresponding SULT1A3 allozymes, packaged in pGEX-2T vector were generated by site-directed mutagenesis. SULT1A3 allozymes were expressed, and purified. Purified SULT1A3 allozymes exhibited differential sulfating activity toward catecholamines and serotonin. Kinetic analyses demonstrated differences in both substrate affinity and catalytic efficiency of the SULT1A3 allozymes. Collectively, these findings provide useful information relevant to the differential metabolism of dopamine, epinephrine, norepinephrine and serotonin through sulfoconjugation in individuals having different SULT1A3/SULT1A4 genotypes.


Asunto(s)
Arilsulfotransferasa/genética , Dopamina/metabolismo , Epinefrina/metabolismo , Norepinefrina/metabolismo , Polimorfismo de Nucleótido Simple , Serotonina/metabolismo , Secuencia de Aminoácidos , Humanos , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA