Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Int J Biol Macromol ; 267(Pt 2): 131648, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631565

RESUMEN

This study aimed to investigate the ion pair association values and association parameters of nano MnSO4 in water and methanol-water mixtures (20 % and 40 % methanol by mass percentage) at varying temperatures (298.15, 303.15, 308.15, and 313.15 K) using the conductometric technique. Additionally, the parameters for complex formation between nano MnSO4 and glycylglycine as a ligand were determined. The focus was on elucidating the thermodynamic formation parameters for the nano Mn2+-glycylglycine interaction, with particular emphasis on comparing the 1: 1 and 1: 2 (M: L) complexes to understand the complexation behavior more comprehensively. The results indicated that the complexation process was spontaneous, as evidenced by negative ΔGf (formation free energy change) values, which increased with temperature, highlighting the enhanced spontaneity of the process. The findings provide valuable insights into designing new materials and procedures by enhancing our understanding of the complexation behavior of nano MnSO4 with ligands like glycylglycine, thus contributing to advancements in various applications such as chemical synthesis, medicines, and environmental remediation. By elucidating the thermodynamic aspects of these interactions, the study aimed to provide valuable information that could be utilized in practical applications and further research endeavors.


Asunto(s)
Glicilglicina , Compuestos de Manganeso , Metanol , Termodinámica , Agua , Agua/química , Glicilglicina/química , Metanol/química , Compuestos de Manganeso/química , Sulfatos/química , Temperatura , Glicina/química , Glicina/análogos & derivados
2.
Colloids Surf B Biointerfaces ; 244: 114194, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39226846

RESUMEN

Electrochemical studies were conducted to analyze the behavior of eugenol, CuCl2, and their complex using cyclic voltammetry. The oxidation mechanisms of eugenol and the redox behavior of copper ions were elucidated, showing differences in reversibility and charge transfer coefficients. Various kinetic and solvation parameters were determined. The redox behavior of CuCl2 was found to be more reversible compared to the copper-eugenol complex. The copper-eugenol complex exhibited enhanced antioxidant activity compared to eugenol and standard ascorbic acid. The eugenol was oxidized to form eugenol quinone methide through two postulated irreversible mechanisms. Molecular docking studies suggested higher potential bioactivity of the copper-eugenol complex towards the target protein of COVID-19 than the eugenol ligand.


Asunto(s)
Antioxidantes , Cobre , Eugenol , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Eugenol/química , Cobre/química , Antioxidantes/química , Antioxidantes/farmacología , SARS-CoV-2/efectos de los fármacos , Humanos , Oxidación-Reducción , Técnicas Electroquímicas , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Antivirales/química , Antivirales/farmacología
3.
Heliyon ; 10(2): e24071, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38293497

RESUMEN

This study investigated the physicochemical properties of the interaction of indomethacin and copper chloride using the electrical conductance measurement in methanol, ethanol, and their binary mixture with water at room temperature (298.15 K), to determine the solvation behavior, redox behavior, and kinetics. The association parameters were computed using the Fuoss-Hsia-Fernández-Prini and Fuoss-Shedlovsky models. The standard Gibbs energy for association (ΔGoA), Walden product (Λoηo), and hydrodynamic radii (RH) were calculated to study the interaction of indomethacin and copper chloride. On the other hand, cyclic voltammetry examines the electrochemical redox behavior of copper chloride using a gold electrode and its interactions with indomethacin. Results showed changes in peak potentials and currents density in the presence of indomethacin, indicating alterations in redox behavior and reaction rates. Overall, this research can be valuable in understanding the electrochemical properties and potential applications of indomethacin and copper chloride, as well as in developing new drugs or therapeutic agents, which could have has implications in various fields, including drug development, electrochemistry, and materials science.

4.
ACS Omega ; 8(15): 13605-13625, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37091434

RESUMEN

A novel hydrazone ligand (o-H2BMP) N-(benzo[d]thiazol-2-yl)-3-oxo-3-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)propanamide alongside its Cu(II), Cd(II), and VO(II) complexes were prepared and structurally characterized via various spectroscopic analyses (Fourier transform infrared spectroscopy, UV-visible spectroscopy, 1H/13C NMR spectroscopy, liquid chromatography coupled to mass spectrometry, and electron paramagnetic resonance spectroscopy) as well as by elemental analysis, thermal gravimetry analysis/differential thermal analysis, and magnetic moment measurements. Powder X-ray diffraction analysis was also performed for the free ligand and its metal complexes to determine the crystallographic structures and atomic spacing. It also provided information on unit cell dimensions and the average crystallite size. Furthermore, geometric optimization and computational studies were carried out by applying Gaussian (09) software based on density-functional theory coupled with the B3LYP functional and LANL2DZ/6-31+G(d,p) mixed basis set to evaluate some distinct features such as molecular electrostatic potential, E HOMO, and E LUMO. Moreover, electrochemical measurements were performed for Cu(II) in the absence/presence of the chelating agent to predict the effect of complexation interaction in the solution state study. As part of the biological examination, antioxidant and antimicrobial assays were conducted for each compound individually, in addition to cytotoxicity evaluations via MTT assays for all isolated complexes compared to the corresponding metal salts. The MOE (molecular operating environment) approach was also applied to model the interface between the isolated compounds and proteins that were expressed in breast cancer at the atomic level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA