Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Bioorg Med Chem ; 22(5): 1708-25, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24508307

RESUMEN

A novel series of bis-indoles derived from naturally occurring marine alkaloid 4 were synthesized and evaluated as inhibitors of methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase (PK). PK is not only critical for bacterial survival which would make it a target for development of novel antibiotics, but it is reported to be one of the most highly connected 'hub proteins' in MRSA, and thus should be very sensitive to mutations and making it difficult for the bacteria to develop resistance. From the co-crystal structure of cis-3-4-dihydrohamacanthin B (4) bound to S. aureus PK we were able to identify the pharmacophore needed for activity. Consequently, we prepared simple direct linked bis-indoles such as 10b that have similar anti-MRSA activity as compound 4. Structure-activity relationship (SAR) studies were carried out on 10b and led us to discover more potent compounds such as 10c, 10d, 10k and 10 m with enzyme inhibiting activities in the low nanomolar range that effectively inhibited the bacteria growth in culture with minimum inhibitory concentrations (MIC) for MRSA as low as 0.5 µg/ml. Some potent PK inhibitors, such as 10b, exhibited attenuated antibacterial activity and were found to be substrates for an efflux mechanism in S. aureus. Studies comparing a wild type S. aureus with a construct (S. aureus LAC Δpyk::Erm(R)) that lacks PK activity confirmed that bactericidal activity of 10d was PK-dependant.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina/química , Piruvato Quinasa/antagonistas & inhibidores , Piruvato Quinasa/uso terapéutico , Humanos , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Estructura Molecular , Infecciones Estafilocócicas/microbiología , Relación Estructura-Actividad
2.
J Biol Chem ; 286(52): 44716-25, 2011 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-22030393

RESUMEN

Novel classes of antimicrobials are needed to address the emergence of multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). We have recently identified pyruvate kinase (PK) as a potential novel drug target based upon it being an essential hub in the MRSA interactome (Cherkasov, A., Hsing, M., Zoraghi, R., Foster, L. J., See, R. H., Stoynov, N., Jiang, J., Kaur, S., Lian, T., Jackson, L., Gong, H., Swayze, R., Amandoron, E., Hormozdiari, F., Dao, P., Sahinalp, C., Santos-Filho, O., Axerio-Cilies, P., Byler, K., McMaster, W. R., Brunham, R. C., Finlay, B. B., and Reiner, N. E. (2011) J. Proteome Res. 10, 1139-1150; Zoraghi, R., See, R. H., Axerio-Cilies, P., Kumar, N. S., Gong, H., Moreau, A., Hsing, M., Kaur, S., Swayze, R. D., Worrall, L., Amandoron, E., Lian, T., Jackson, L., Jiang, J., Thorson, L., Labriere, C., Foster, L., Brunham, R. C., McMaster, W. R., Finlay, B. B., Strynadka, N. C., Cherkasov, A., Young, R. N., and Reiner, N. E. (2011) Antimicrob. Agents Chemother. 55, 2042-2053). Screening of an extract library of marine invertebrates against MRSA PK resulted in the identification of bis-indole alkaloids of the spongotine (A), topsentin (B, D), and hamacanthin (C) classes isolated from the Topsentia pachastrelloides as novel bacterial PK inhibitors. These compounds potently and selectively inhibited both MRSA PK enzymatic activity and S. aureus growth in vitro. The most active compounds, cis-3,4-dihyrohyrohamacanthin B (C) and bromodeoxytopsentin (D), were identified as highly potent MRSA PK inhibitors (IC(50) values of 16-60 nM) with at least 166-fold selectivity over human PK isoforms. These novel anti-PK natural compounds exhibited significant antibacterial activities against S. aureus, including MRSA (minimal inhibitory concentrations (MIC) of 12.5 and 6.25 µg/ml, respectively) with selectivity indices (CC(50)/MIC) >4. We also report the discrete structural features of the MRSA PK tetramer as determined by x-ray crystallography, which is suitable for selective targeting of the bacterial enzyme. The co-crystal structure of compound C with MRSA PK confirms that the latter is a target for bis-indole alkaloids. It elucidates the essential structural requirements for PK inhibitors in "small" interfaces that provide for tetramer rigidity and efficient catalytic activity. Our results identified a series of natural products as novel MRSA PK inhibitors, providing the basis for further development of potential novel antimicrobials.


Asunto(s)
Alcaloides/química , Antiinfecciosos/química , Proteínas Bacterianas , Inhibidores Enzimáticos/química , Indoles/química , Staphylococcus aureus Resistente a Meticilina/enzimología , Piruvato Quinasa , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Humanos , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Piruvato Quinasa/antagonistas & inhibidores , Piruvato Quinasa/química , Relación Estructura-Actividad
3.
Biochim Biophys Acta ; 1814(2): 283-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21109028

RESUMEN

The Atlantic salmon (Salmo salar) serum lectin (SSL) is a C-type lectin that binds to bacteria including salmon pathogens. SSL has been shown to be oligomeric in salmon serum and it displays a stoichiometric band-laddering pattern when analyzed by SDS-PAGE under non-reducing conditions. In this study, a model was generated for SSL isoform 2 in silico in order to identify cysteines that are available to form intermolecular disulfide bonds facilitating oligomerization. Then, recombinant SSL was expressed in E. coli and mutants were produced at positions Cys72 and Cys149. The SSL preparations were purified by metal-affinity chromatography and shown to be functional by carbohydrate-affinity chromatography. The recombinant SSL formed oligomers, which were evident by non-reducing covalent cross-linking and non-reducing SDS-PAGE; however, the band patterns were different for the mutants, with the maximal and predominant multimer sizes distinct from the wild-type recombinant lectin. Further examination of oligomerization by size exclusion chromatography revealed a subunit number from 35 to at least 110 for the wild-type recombinant SSL and subunit numbers below 9 for each mutant SSL oligomer. Thus, both cysteines were found to contribute to oligomerization of SSL.


Asunto(s)
Proteínas de Peces/sangre , Proteínas de Peces/química , Lectinas Tipo C/sangre , Lectinas Tipo C/química , Salmo salar/sangre , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Cromatografía de Afinidad , Reactivos de Enlaces Cruzados , Cistina/química , Cartilla de ADN/genética , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Proteínas de Peces/genética , Inmunidad Innata , Lectinas Tipo C/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Pliegue de Proteína , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Salmo salar/genética , Salmo salar/inmunología , Homología de Secuencia de Aminoácido , Homología Estructural de Proteína
4.
Bioorg Med Chem ; 20(24): 7069-82, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23141418

RESUMEN

A novel series of hydrazones were synthesized and evaluated as inhibitors of methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase (PK). PK has been identified as one of the most highly connected 'hub proteins' in MRSA. PK has been shown to be critical for bacterial survival which makes it a potential target for development of novel antibiotics and the high degree of connectivity implies it should be very sensitive to mutations and thus less able to develop resistance. PK is not unique to bacteria and thus a critical requirement for such a PK inhibitor would be that it does not inhibit the homologous human enzyme(s) at therapeutic concentrations. Several MRSA PK inhibitors (including 8d) were identified using in silico screening combined with enzyme assays and were found to be selective for bacterial enzyme compared to four human PK isoforms (M1, M2, R and L). However these lead compounds did not show significant inhibitory activity for MRSA growth presumably due to poor bacterial cell penetration. Structure-activity relationship (SAR) studies were carried out on 8d and led us to discover more potent compounds with enzyme inhibiting activities in the low nanomolar range and some were found to effectively inhibit bacteria growth in culture with minimum inhibitory concentrations (MIC) as low as 1 µg/mL. These inhibitors bind in two elongated flat clefts found at the minor interfaces in the homo-tetrameric enzyme complex and the observed SAR is in keeping with the size and electronic constraints of these binding sites. Access to the corresponding sites in the human enzyme is blocked.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Staphylococcus aureus Resistente a Meticilina/enzimología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Piruvato Quinasa/antagonistas & inhibidores , Humanos , Modelos Moleculares , Piruvato Quinasa/metabolismo , Relación Estructura-Actividad
5.
J Proteome Res ; 10(3): 1139-50, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21166474

RESUMEN

Mortality attributable to infection with methicillin-resistant Staphylococcus aureus (MRSA) has now overtaken the death rate for AIDS in the United States, and advances in research are urgently needed to address this challenge. We report the results of the systematic identification of protein-protein interactions for the hospital-acquired strain MRSA-252. Using a high-throughput pull-down strategy combined with quantitative proteomics to distinguish specific from nonspecific interactors, we identified 13,219 interactions involving 608 MRSA proteins. Consecutive analyses revealed that this protein interaction network (PIN) exhibits scale-free organization with the characteristic presence of highly connected hub proteins. When clinical and experimental antimicrobial targets were queried in the network, they were generally found to occupy peripheral positions in the PIN with relatively few interacting partners. In contrast, the hub proteins identified in this MRSA PIN that are essential for network integrity and stability have largely been overlooked as drug targets. Thus, this empirical MRSA-252 PIN provides a rich source for identifying critical proteins essential for network stability, many of which can be considered as prospective antimicrobial drug targets.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Staphylococcus aureus Resistente a Meticilina/química , Staphylococcus aureus Resistente a Meticilina/metabolismo , Mapeo de Interacción de Proteínas/métodos , Animales , Proteínas Bacterianas/genética , Humanos , Espectrometría de Masas , Proteómica/métodos , Proteínas Recombinantes de Fusión/metabolismo , Infecciones Estafilocócicas/metabolismo
6.
Antimicrob Agents Chemother ; 55(5): 2042-53, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21357306

RESUMEN

Novel classes of antimicrobials are needed to address the challenge of multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). Using the architecture of the MRSA interactome, we identified pyruvate kinase (PK) as a potential novel drug target based upon it being a highly connected, essential hub in the MRSA interactome. Structural modeling, including X-ray crystallography, revealed discrete features of PK in MRSA, which appeared suitable for the selective targeting of the bacterial enzyme. In silico library screening combined with functional enzymatic assays identified an acyl hydrazone-based compound (IS-130) as a potent MRSA PK inhibitor (50% inhibitory concentration [IC50] of 0.1 µM) with >1,000-fold selectivity over human PK isoforms. Medicinal chemistry around the IS-130 scaffold identified analogs that more potently and selectively inhibited MRSA PK enzymatic activity and S. aureus growth in vitro (MIC of 1 to 5 µg/ml). These novel anti-PK compounds were found to possess antistaphylococcal activity, including both MRSA and multidrug-resistant S. aureus (MDRSA) strains. These compounds also exhibited exceptional antibacterial activities against other Gram-positive genera, including enterococci and streptococci. PK lead compounds were found to be noncompetitive inhibitors and were bactericidal. In addition, mutants with significant increases in MICs were not isolated after 25 bacterial passages in culture, indicating that resistance may be slow to emerge. These findings validate the principles of network science as a powerful approach to identify novel antibacterial drug targets. They also provide a proof of principle, based upon PK in MRSA, for a research platform aimed at discovering and optimizing selective inhibitors of novel bacterial targets where human orthologs exist, as leads for anti-infective drug development.


Asunto(s)
Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/enzimología , Piruvato Quinasa/metabolismo , Secuencia de Aminoácidos , Electroforesis en Gel de Poliacrilamida , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Datos de Secuencia Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Piruvato Quinasa/química , Piruvato Quinasa/genética , Homología de Secuencia de Aminoácido
7.
Biochemistry ; 49(35): 7733-47, 2010 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-20707314

RESUMEN

Novel antimicrobial targets are urgently needed to overcome rising antibiotic resistance of important human pathogens including methicillin-resistant Staphylococcus aureus (MRSA). Here we report the essentiality and kinetic properties of MRSA pyruvate kinase (PK). Targetron-mediated gene disruption demonstrated PK is essential for S. aureus growth and survival, suggesting that this protein may be a potential drug target. The presence of the pfk (6-phosphofructokinase)-pyk operon in MRSA252, and the nonessential nature of PFK shown by targetron, further emphasized the essential role of PK in cell viability. The importance of PK in bacterial growth was confirmed by showing that its enzymatic activity peaked during the logarithmic phase of S. aureus growth. PK from Staphylococcus and several other species of bacteria have an extra C-terminal domain (CT) containing a phosphoenolpyruvate (PEP) binding motif. To elucidate the possible structure and function of this sequence, the quaternary structures and kinetic properties of the full-length MRSA PK and truncated MRSA PK lacking the CT domain were characterized. Our results showed that (1) MRSA PK is an allosteric enzyme with homotetramer architecture activated by AMP or ribose 5-phosphate (R5P), but not by fructose 1,6-bisphosphate (FBP), which suggests a different mode of allosteric regulation when compared with human isozymes, (2) the CT domain is not required for the tetramerization of the enzyme; homotetramerization occurred in a truncated PK lacking the domain, (3) truncated enzyme exhibited high affinity toward both PEP and ADP and exhibited hyperbolic kinetics toward PEP in the presence of activators (AMP and R5P) consistent with kinetic properties of full-length enzyme, indicating that the CT domain is not required for substrate binding or allosteric regulation observed in the holoenzyme, (4) the kinetic efficiency (k(cat)/S(0.5)) of truncated enzyme was decreased by 24- and 16-fold, in ligand-free state, toward PEP and ADP, respectively, but was restored by 3-fold in AMP-bound state, suggesting that the sequence containing the CT domain (Gly(473)-Leu(585)) plays a substantial role in enzyme activity and comformational stability, and (5) full-length MRSA PK activity was stimulated at low concentrations of ATP (e.g., 1 mM) and inhibited by inorganic phosphate and high concentrations of FBP (10 mM) and ATP (e.g., >2.5 mM), whereas for truncated enzyme, stimulation at low concentrations of ATP was lost. These findings suggest that the CT domain is involved in maintaining the specificity of allosteric regulation of MRSA PK by AMP, R5P, and ATP. The CT extension also encodes a protein domain with homology to enzyme I of the Escherichia coli sugar-PTS system, suggesting that MRSA PK may also exert an important regulatory role in sugar transport metabolism. These findings yield new insights into MRSA PK function and mode of allosteric regulation which may aid in the development of clinically important drugs targeting this enzyme and further define the role of the extra C-terminal domain in modulating the enzyme's activity.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina/enzimología , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Secuencia de Aminoácidos , Cinética , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Staphylococcus aureus Resistente a Meticilina/metabolismo , Datos de Secuencia Molecular , Filogenia , Piruvato Quinasa/química , Termodinámica
8.
Biochim Biophys Acta ; 1784(11): 1835-43, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18773978

RESUMEN

We have introduced tryptophan as a local fluorescent probe to monitor the conformation of Vibrio harveyi acyl carrier protein (ACP), a small flexible protein that is unfolded at neutral pH but must undergo reversible conformational change during the synthesis and delivery of bacterial fatty acids. Consistent with known 3D structures of ACP, steady-state fluorescence and quenching experiments indicated that Trp at positions 46, 50, and 72 are buried in the hydrophobic core upon Mg(2+)-induced ACP folding, whereas residues 25 and 45 remain in a hydrophilic environment on the protein surface. Attachment of fatty acids to the phosphopantetheine prosthetic group progressively stabilized the folded conformation of all Trp-substituted ACPs, but longer chains (14:0) were less effective than medium chains (8:0) in shielding Trp from acrylamide quenching in the L46W protein. Interaction with ACP-dependent enzymes LpxA and holo-ACP synthase also caused folding of L46W; fluorescence quenching indicated proximity of Trp-45 in helix II of ACP in LpxA binding. Our results suggest that divalent cations and fatty acylation produce differing environments in the ACP core and also reveal enzyme partner-induced folding of ACP, a key feature of "natively unfolded" proteins.


Asunto(s)
Proteína Transportadora de Acilo/química , Proteína Transportadora de Acilo/metabolismo , Enzimas/metabolismo , Pliegue de Proteína , Triptófano/química , Vibrio/metabolismo , Proteína Transportadora de Acilo/aislamiento & purificación , Acilación , Aciltransferasas/metabolismo , Dicroismo Circular , Fluorescencia , Magnesio/farmacología , Modelos Moleculares , Unión Proteica , Conformación Proteica , Triptófano/efectos de los fármacos , Vibrio/química
9.
Eur J Med Chem ; 125: 1-13, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27643559

RESUMEN

Several novel series of compounds were synthesized and evaluated as inhibitors of methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase (PK). PK has been identified as a highly interconnected essential 'hub' protein in MRSA, with structural features distinct from the human homologs which makes it a novel antimicrobial target. Several MRSA PK inhibitors (including the hydrazide 1) were identified using in silico screening combined with enzyme assays and were found to be selective for bacterial enzyme compared to human PK isoforms. Structure-activity relationship (SAR) studies were carried out on the replacement of the hydrazide linker with 3-atoms, 2-atoms and 0-atom linkers and led us to discover more potent compounds with enzyme inhibiting activities in the low nanomolar range and some were found to effectively inhibit bacteria growth in culture with minimum inhibitory concentrations (MIC) as low as 1 µg/mL.


Asunto(s)
Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/enzimología , Piruvato Quinasa/antagonistas & inhibidores , Antibacterianos/química , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Simulación por Computador , Humanos , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad
10.
Biochim Biophys Acta ; 1601(2): 208-14, 2002 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-12445484

RESUMEN

Conformational flexibility of acyl carrier protein (ACP) is important for its ability to interact with multiple enzymes in bacterial fatty acid metabolism. We have recently shown that, unlike the prototypical ACP from Escherichia coli, the more acidic Vibrio harveyi ACP is largely unfolded at physiological pH. Mutations D18K, A75H and A75H/D18K were made in recombinant V. harveyi ACP (rACP) to determine the importance of basic residues Lys-18 and His-75 in maintaining the native conformation of E. coli ACP. Both D18K and A75H ACPs were fatty acylated by acyl-ACP synthetase, showing that neither mutation grossly alters tertiary structure. Circular dichroism (CD) indicated that rACP refolded upon addition of MgCl(2) at 100-fold lower concentrations (<1 mM) than KCl, suggesting that divalent cations stabilize rACP by interaction at specific sites. Surprisingly, mutants A75H and A75H/D18K exhibited native-like conformation in the absence of MgCl(2), while the D18K mutant was comparable to rACP. Moreover, the alpha-helical content of A75H, A75H/D18K and E. coli ACPs was more sensitive than that of rACP or D18K ACP to modification by the histidine-selective reagent diethylpyrocarbonate. Together, these results suggest that the partial positive charge of His-75 may be important in maintaining the conformational stability of E. coli ACP at a neutral pH.


Asunto(s)
Proteína Transportadora de Acilo/química , Proteínas Bacterianas/química , Proteínas de Escherichia coli/química , Conformación Proteica , Proteína Transportadora de Acilo/aislamiento & purificación , Proteína Transportadora de Acilo/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Datos de Secuencia Molecular , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Vibrio/metabolismo
11.
ACS Chem Biol ; 7(2): 350-9, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22066782

RESUMEN

We have recently mapped the protein interaction network of methicillin-resistant Staphylococcus aureus (MRSA), which revealed its scale-free organization with characteristic presence of highly connected hub proteins that are critical for bacterial survival. Here we report the discovery of inhibitors that are highly potent against one such hub target, staphylococcal pyruvate kinase (PK). Importantly, the developed compounds demonstrate complete selectivity for the bacterial enzyme compared to all human orthologues. The lead 91nM inhibitor IS-130 has been identified through ligand-based cheminformatic exploration of a chemical space around micromolar hits initially generated by experimental screening. The following crystallographic study resulted in identification of a tetrameric MRSA PK structure where IS-130 is bound to the interface between the protein's subunits. This newly described binding pocket is not present in otherwise highly similar human orthologues and can be effectively utilized for selective inhibition of bacterial PK. The following synthetic modifications of IS-130, guided by structure-based molecular modeling, resulted in the development of MRSA PK inhibitors with much improved antimicrobial properties. Considering a notable lack of recent reports on novel antibacterial targets and cognate antibacterial compounds, this study provides a valuable perspective on the development of a new generation of antimicrobials. Equally noteworthy, the results of the current work highlight the importance of rigorous cheminformatics-based exploration of the results of high-throughput experiments.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/enzimología , Piruvato Quinasa/antagonistas & inhibidores , Piruvato Quinasa/metabolismo , Secuencia de Aminoácidos , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mapas de Interacción de Proteínas/efectos de los fármacos , Piruvato Quinasa/química , Alineación de Secuencia , Infecciones Estafilocócicas/tratamiento farmacológico
12.
J Ethnopharmacol ; 137(1): 767-73, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21782012

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Baicalein, the active constituent derived from Scutellaria baicalensis Georgi., has previously been shown to significantly restore the effectiveness of ß-lactam antibiotics and tetracycline against methicillin-resistant Staphylococcus aureus (MRSA). With multiple therapeutic benefits, the antibacterial actions of baicalein may also be involved in overcoming other bacterial resistance mechanisms. The aim of the present study was to further investigate antibacterial activities of baicalein in association with various antibiotics against selected Staphylococcus aureus strains with known specific drug resistance mechanisms. MATERIAL AND METHODS: A panel of clinical MRSA strains was used for further confirmation of the antibacterial activities of baicalein. The effect of baicalein on inhibiting the enzymatic activity of a newly discovered MRSA-specific pyruvate kinase (PK), which is essential for Staphylococcus aureus growth and survival was also examined. RESULTS: In the checkerboard dilution test and time-kill assay, baicalein at 16 µg/ml could synergistically restore the antibacterial actions of ciprofloxacin against the NorA efflux pump overexpressed SA-1199B, but not with the poor NorA substrate, pefloxacin. Moreover, synergistic effects were observed when baicalein was combined with ciprofloxacin against 12 out of 20 clinical ciprofloxacin resistant strains. For MRSA PK studies, baicalein alone could inhibit the enzymatic activity of MRSA PK in a dose-dependent manner. CONCLUSION: Our results demonstrated that baicalein could significantly reverse the ciprofloxacin resistance of MRSA possibly by inhibiting the NorA efflux pump in vitro. The inhibition of MRSA PK by baicalein could lead to a deficiency of ATP which might further contribute to the antibacterial actions of baicalein against MRSA.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Ciprofloxacina/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Flavanonas/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Piruvato Quinasa/antagonistas & inhibidores , Proteínas Bacterianas/genética , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Staphylococcus aureus Resistente a Meticilina/enzimología , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Piruvato Quinasa/metabolismo , Factores de Tiempo , Regulación hacia Arriba
13.
Biochem Cell Biol ; 85(6): 649-62, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18059524

RESUMEN

Acyl carrier protein (ACP) is a universal and highly conserved carrier of acyl intermediates during fatty acid synthesis. In yeast and mammals, ACP exists as a separate domain within a large multifunctional fatty acid synthase polyprotein (type I FAS), whereas it is a small monomeric protein in bacteria and plastids (type II FAS). Bacterial ACPs are also acyl donors for synthesis of a variety of products, including endotoxin and acylated homoserine lactones involved in quorum sensing; the distinct and essential nature of these processes in growth and pathogenesis make ACP-dependent enzymes attractive antimicrobial drug targets. Additionally, ACP homologues are key components in the production of secondary metabolites such as polyketides and nonribosomal peptides. Many ACPs exhibit characteristic structural features of natively unfolded proteins in vitro, with a dynamic and flexible conformation dominated by 3 parallel alpha helices that enclose the thioester-linked acyl group attached to a phosphopantetheine prosthetic group. ACP conformation may also be influenced by divalent cations and interaction with partner enzymes through its "recognition" helix II, properties that are key to its ability to alternately sequester acyl groups and deliver them to the active sites of ACP-dependent enzymes. This review highlights recent progress in defining how the structural features of ACP are related to its multiple carrier roles in fatty acid metabolism.


Asunto(s)
Proteína Transportadora de Acilo/química , Proteína Transportadora de Acilo/metabolismo , Secuencia Conservada , Familia de Multigenes , Proteína Transportadora de Acilo/clasificación , Secuencia de Aminoácidos , Animales , Ácido Graso Sintasas/metabolismo , Ácidos Grasos/biosíntesis , Humanos , Datos de Secuencia Molecular , Relación Estructura-Actividad
14.
J Biol Chem ; 282(7): 4494-4503, 2007 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-17179150

RESUMEN

Acyl carrier protein (ACP), a small protein essential for bacterial growth and pathogenesis, interacts with diverse enzymes during the biosynthesis of fatty acids, phospholipids, and other specialized products such as lipid A. NMR and hydrodynamic studies have previously shown that divalent cations stabilize native helical ACP conformation by binding to conserved acidic residues at two sites (A and B) at either end of the "recognition" helix II. To examine the roles of these amino acids in ACP structure and function, site-directed mutagenesis was used to replace individual site A (Asp-30, Asp-35, Asp-38) and site B (Glu-47, Glu-53, Asp-56) residues in recombinant Vibrio harveyi ACP with the corresponding amides, along with combined mutations at each site (SA, SB) or both sites (SA/SB). Like native V. harveyi ACP, all individual mutants were unfolded at neutral pH but adopted a helical conformation in the presence of millimolar Mg(2+) or upon fatty acylation. Mg(2+) binding to sites A or B independently stabilized native ACP conformation, whereas mutant SA/SB was folded in the absence of Mg(2+), suggesting that charge neutralization is largely responsible for ACP stabilization by divalent cations. Asp-35 in site A was critical for holo-ACP synthase activity, while acyl-ACP synthetase and UDP-N-acetylglucosamine acyltransferase (LpxA) activities were more affected by mutations in site B. Both sites were required for fatty acid synthase activity. Overall, our results indicate that divalent cation binding site mutations have predicted effects on ACP conformation but unpredicted and variable consequences on ACP function with different enzymes.


Asunto(s)
Proteína Transportadora de Acilo/química , Proteínas Bacterianas/química , Pliegue de Proteína , Vibrio/química , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Aciltransferasas/química , Aciltransferasas/genética , Aciltransferasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Cationes Bivalentes/química , Cationes Bivalentes/metabolismo , Concentración de Iones de Hidrógeno , Magnesio/química , Magnesio/metabolismo , Mutagénesis Sitio-Dirigida , Unión Proteica/genética , Estructura Secundaria de Proteína/genética , Relación Estructura-Actividad , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Vibrio/genética , Vibrio/metabolismo
15.
Biochem Biophys Res Commun ; 302(1): 35-40, 2003 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-12593844

RESUMEN

Bacterial acyl carrier protein (ACP) is a small, acidic, and highly conserved protein that supplies acyl groups for biosynthesis of a variety of lipid products. Recent modelling studies predict that residues primarily in helix II of Escherichia coli ACP (Glu-41, Ala-45) are involved in its interaction with the condensing enzyme FabH of fatty acid synthase. Using recombinant Vibrio harveyi ACP as a template for site-directed mutagenesis, we have shown that an acidic residue at position 41 is essential for V. harveyi fatty acid synthase (but not acyl-ACP synthetase) activity. In contrast, various replacements of Ala-45 were tolerated by both enzymes. None of the mutations introduced dramatic structural changes based on circular dichroism and native gel electrophoresis. These results confirm that Glu-41 of ACP is a critical residue for fatty acid synthase, but not for all enzymes that utilize ACP as a substrate.


Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Ácido Graso Sintasas/metabolismo , Ácido Glutámico/metabolismo , Vibrio/metabolismo , Proteína Transportadora de Acilo/química , Dicroismo Circular , Mutagénesis Sitio-Dirigida , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA