Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 868
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(11): 2345-2360.e16, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37167971

RESUMEN

A functional network of blood vessels is essential for organ growth and homeostasis, yet how the vasculature matures and maintains homeostasis remains elusive in live mice. By longitudinally tracking the same neonatal endothelial cells (ECs) over days to weeks, we found that capillary plexus expansion is driven by vessel regression to optimize network perfusion. Neonatal ECs rearrange positions to evenly distribute throughout the developing plexus and become positionally stable in adulthood. Upon local ablation, adult ECs survive through a plasmalemmal self-repair response, while neonatal ECs are predisposed to die. Furthermore, adult ECs reactivate migration to assist vessel repair. Global ablation reveals coordinated maintenance of the adult vascular architecture that allows for eventual network recovery. Lastly, neonatal remodeling and adult maintenance of the skin vascular plexus are orchestrated by temporally restricted, neonatal VEGFR2 signaling. Our work sheds light on fundamental mechanisms that underlie both vascular maturation and adult homeostasis in vivo.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Animales , Ratones , Células Endoteliales/fisiología , Neovascularización Fisiológica/fisiología , Piel , Membrana Celular
2.
Cell ; 185(17): 3263-3277.e15, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35931082

RESUMEN

Live bacterial therapeutics (LBTs) could reverse diseases by engrafting in the gut and providing persistent beneficial functions in the host. However, attempts to functionally manipulate the gut microbiome of conventionally raised (CR) hosts have been unsuccessful because engineered microbial organisms (i.e., chassis) have difficulty in colonizing the hostile luminal environment. In this proof-of-concept study, we use native bacteria as chassis for transgene delivery to impact CR host physiology. Native Escherichia coli bacteria isolated from the stool cultures of CR mice were modified to express functional genes. The reintroduction of these strains induces perpetual engraftment in the intestine. In addition, engineered native E. coli can induce functional changes that affect physiology of and reverse pathology in CR hosts months after administration. Thus, using native bacteria as chassis to "knock in" specific functions allows mechanistic studies of specific microbial activities in the microbiome of CR hosts and enables LBT with curative intent.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Bacterias/genética , Escherichia coli/genética , Microbioma Gastrointestinal/fisiología , Ratones , Transgenes
3.
Cell ; 182(5): 1311-1327.e14, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32888495

RESUMEN

Staphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality rates of ∼25%. The ability to rapidly predict SaB patient responses and guide personalized treatment regimens could reduce mortality. Here, we present a resource of SaB prognostic biomarkers. Integrating proteomic and metabolomic techniques enabled the identification of >10,000 features from >200 serum samples collected upon clinical presentation. We interrogated the complexity of serum using multiple computational strategies, which provided a comprehensive view of the early host response to infection. Our biomarkers exceed the predictive capabilities of those previously reported, particularly when used in combination. Last, we validated the biological contribution of mortality-associated pathways using a murine model of SaB. Our findings represent a starting point for the development of a prognostic test for identifying high-risk patients at a time early enough to trigger intensive monitoring and interventions.


Asunto(s)
Bacteriemia/sangre , Bacteriemia/mortalidad , Infecciones Estafilocócicas/sangre , Infecciones Estafilocócicas/mortalidad , Staphylococcus aureus/patogenicidad , Animales , Bacteriemia/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Metabolómica/métodos , Ratones , Persona de Mediana Edad , Pronóstico , Proteómica/métodos , Factores de Riesgo , Infecciones Estafilocócicas/metabolismo
4.
Nat Immunol ; 22(4): 485-496, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33767426

RESUMEN

Evasion of host immunity is a hallmark of cancer; however, mechanisms linking oncogenic mutations and immune escape are incompletely understood. Through loss-of-function screening of 1,001 tumor suppressor genes, we identified death-associated protein kinase 3 (DAPK3) as a previously unrecognized driver of anti-tumor immunity through the stimulator of interferon genes (STING) pathway of cytosolic DNA sensing. Loss of DAPK3 expression or kinase activity impaired STING activation and interferon (IFN)-ß-stimulated gene induction. DAPK3 deficiency in IFN-ß-producing tumors drove rapid growth and reduced infiltration of CD103+CD8α+ dendritic cells and cytotoxic lymphocytes, attenuating the response to cancer chemo-immunotherapy. Mechanistically, DAPK3 coordinated post-translational modification of STING. In unstimulated cells, DAPK3 inhibited STING K48-linked poly-ubiquitination and proteasome-mediated degradation. After cGAMP stimulation, DAPK3 was required for STING K63-linked poly-ubiquitination and STING-TANK-binding kinase 1 interaction. Comprehensive phospho-proteomics uncovered a DAPK3-specific phospho-site on the E3 ligase LMO7, critical for LMO7-STING interaction and STING K63-linked poly-ubiquitination. Thus, DAPK3 is an essential kinase for STING activation that drives tumor-intrinsic innate immunity and tumor immune surveillance.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/enzimología , Inmunidad Innata , Interferón beta/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias/enzimología , Escape del Tumor , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Proteínas Quinasas Asociadas a Muerte Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunidad Innata/efectos de los fármacos , Interferón beta/genética , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/inmunología , Fosforilación , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Escape del Tumor/efectos de los fármacos , Ubiquitinación
5.
Cell ; 175(6): 1620-1633.e13, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30415836

RESUMEN

Fibroblasts are an essential cellular and structural component of our organs. Despite several advances, the critical behaviors that fibroblasts utilize to maintain their homeostasis in vivo have remained unclear. Here, by tracking the same skin fibroblasts in live mice, we show that fibroblast position is stable over time and that this stability is maintained despite the loss of neighboring fibroblasts. In contrast, fibroblast membranes are dynamic during homeostasis and extend to fill the space of lost neighboring fibroblasts in a Rac1-dependent manner. Positional stability is sustained during aging despite a progressive accumulation of gaps in fibroblast nuclei organization, while membrane occupancy continues to be maintained. This work defines positional stability and cell occupancy as key principles of skin fibroblast homeostasis in vivo, throughout the lifespan of mice, and identifies membrane extension in the absence of migration as the core cellular mechanism to carry out these principles.


Asunto(s)
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Fibroblastos/metabolismo , Homeostasis/fisiología , Piel/metabolismo , Animales , Membrana Celular/genética , Núcleo Celular/genética , Células Cultivadas , Fibroblastos/citología , Ratones , Ratones Transgénicos , Piel/citología
6.
Cell ; 172(3): 590-604.e13, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29373831

RESUMEN

Stress granules (SGs) are transient ribonucleoprotein (RNP) aggregates that form during cellular stress and are increasingly implicated in human neurodegeneration. To study the proteome and compositional diversity of SGs in different cell types and in the context of neurodegeneration-linked mutations, we used ascorbate peroxidase (APEX) proximity labeling, mass spectrometry, and immunofluorescence to identify ∼150 previously unknown human SG components. A highly integrated, pre-existing SG protein interaction network in unstressed cells facilitates rapid coalescence into larger SGs. Approximately 20% of SG diversity is stress or cell-type dependent, with neuronal SGs displaying a particularly complex repertoire of proteins enriched in chaperones and autophagy factors. Strengthening the link between SGs and neurodegeneration, we demonstrate aberrant dynamics, composition, and subcellular distribution of SGs in cells from amyotrophic lateral sclerosis (ALS) patients. Using three Drosophila ALS/FTD models, we identify SG-associated modifiers of neurotoxicity in vivo. Altogether, our results highlight SG proteins as central to understanding and ultimately targeting neurodegeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Gránulos Citoplasmáticos/metabolismo , Mapas de Interacción de Proteínas , Ribonucleoproteínas/metabolismo , Estrés Fisiológico , Animales , Drosophila melanogaster , Células HEK293 , Células HeLa , Humanos , Neuronas/metabolismo , Transporte de Proteínas
7.
Cell ; 175(3): 679-694.e22, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30340040

RESUMEN

Dietary soluble fibers are fermented by gut bacteria into short-chain fatty acids (SCFA), which are considered broadly health-promoting. Accordingly, consumption of such fibers ameliorates metabolic syndrome. However, incorporating soluble fiber inulin, but not insoluble fiber, into a compositionally defined diet, induced icteric hepatocellular carcinoma (HCC). Such HCC was microbiota-dependent and observed in multiple strains of dysbiotic mice but not in germ-free nor antibiotics-treated mice. Furthermore, consumption of an inulin-enriched high-fat diet induced both dysbiosis and HCC in wild-type (WT) mice. Inulin-induced HCC progressed via early onset of cholestasis, hepatocyte death, followed by neutrophilic inflammation in liver. Pharmacologic inhibition of fermentation or depletion of fermenting bacteria markedly reduced intestinal SCFA and prevented HCC. Intervening with cholestyramine to prevent reabsorption of bile acids also conferred protection against such HCC. Thus, its benefits notwithstanding, enrichment of foods with fermentable fiber should be approached with great caution as it may increase risk of HCC.


Asunto(s)
Carcinoma Hepatocelular/etiología , Colestasis/complicaciones , Fibras de la Dieta/metabolismo , Disbiosis/complicaciones , Fermentación , Microbioma Gastrointestinal , Neoplasias Hepáticas/etiología , Animales , Carcinoma Hepatocelular/microbiología , Línea Celular Tumoral , Colestasis/microbiología , Dieta Alta en Grasa/efectos adversos , Disbiosis/microbiología , Inulina/efectos adversos , Neoplasias Hepáticas/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL
8.
Nature ; 619(7968): 167-175, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37344586

RESUMEN

Healthy skin is a mosaic of wild-type and mutant clones1,2. Although injury can cooperate with mutated Ras family proteins to promote tumorigenesis3-12, the consequences in genetically mosaic skin are unknown. Here we show that after injury, wild-type cells suppress aberrant growth induced by oncogenic Ras. HrasG12V/+ and KrasG12D/+ cells outcompete wild-type cells in uninjured, mosaic tissue but their expansion is prevented after injury owing to an increase in the fraction of proliferating wild-type cells. Mechanistically, we show that, unlike HrasG12V/+ cells, wild-type cells respond to autocrine and paracrine secretion of EGFR ligands, and this differential activation of the EGFR pathway explains the competitive switch during injury repair. Inhibition of EGFR signalling via drug or genetic approaches diminishes the proportion of dividing wild-type cells after injury, leading to the expansion of HrasG12V/+ cells. Increased proliferation of wild-type cells via constitutive loss of the cell cycle inhibitor p21 counteracts the expansion of HrasG12V/+ cells even in the absence of injury. Thus, injury has a role in switching the competitive balance between oncogenic and wild-type cells in genetically mosaic skin.


Asunto(s)
Proliferación Celular , Genes ras , Mosaicismo , Mutación , Piel , Proteínas ras , Ciclo Celular , Proliferación Celular/genética , Receptores ErbB/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Piel/citología , Piel/lesiones , Piel/metabolismo , Piel/patología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/deficiencia , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo
9.
Proc Natl Acad Sci U S A ; 121(8): e2306729121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38349877

RESUMEN

Wildfires have become more frequent and intense due to climate change and outdoor wildfire fine particulate matter (PM2.5) concentrations differ from relatively smoothly varying total PM2.5. Thus, we introduced a conceptual model for computing long-term wildfire PM2.5 and assessed disproportionate exposures among marginalized communities. We used monitoring data and statistical techniques to characterize annual wildfire PM2.5 exposure based on intermittent and extreme daily wildfire PM2.5 concentrations in California census tracts (2006 to 2020). Metrics included: 1) weeks with wildfire PM2.5 < 5 µg/m3; 2) days with non-zero wildfire PM2.5; 3) mean wildfire PM2.5 during peak exposure week; 4) smoke waves (≥2 consecutive days with <15 µg/m3 wildfire PM2.5); and 5) mean annual wildfire PM2.5 concentration. We classified tracts by their racial/ethnic composition and CalEnviroScreen (CES) score, an environmental and social vulnerability composite measure. We examined associations of CES and racial/ethnic composition with the wildfire PM2.5 metrics using mixed-effects models. Averaged 2006 to 2020, we detected little difference in exposure by CES score or racial/ethnic composition, except for non-Hispanic American Indian and Alaska Native populations, where a 1-SD increase was associated with higher exposure for 4/5 metrics. CES or racial/ethnic × year interaction term models revealed exposure disparities in some years. Compared to their California-wide representation, the exposed populations of non-Hispanic American Indian and Alaska Native (1.68×, 95% CI: 1.01 to 2.81), white (1.13×, 95% CI: 0.99 to 1.32), and multiracial (1.06×, 95% CI: 0.97 to 1.23) people were over-represented from 2006 to 2020. In conclusion, during our study period in California, we detected disproportionate long-term wildfire PM2.5 exposure for several racial/ethnic groups.


Asunto(s)
Contaminantes Atmosféricos , Incendios Forestales , Humanos , Material Particulado/efectos adversos , Humo/efectos adversos , California , Grupos Raciales , Exposición a Riesgos Ambientales , Contaminantes Atmosféricos/efectos adversos
10.
J Biol Chem ; 300(6): 107393, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777143

RESUMEN

Protein tyrosine phosphatase nonreceptor type 22 (PTPN22) is encoded by a major autoimmunity gene and is a known inhibitor of T cell receptor (TCR) signaling and drug target for cancer immunotherapy. However, little is known about PTPN22 posttranslational regulation. Here, we characterize a phosphorylation site at Ser325 situated C terminal to the catalytic domain of PTPN22 and its roles in altering protein function. In human T cells, Ser325 is phosphorylated by glycogen synthase kinase-3 (GSK3) following TCR stimulation, which promotes its TCR-inhibitory activity. Signaling through the major TCR-dependent pathway under PTPN22 control was enhanced by CRISPR/Cas9-mediated suppression of Ser325 phosphorylation and inhibited by mimicking it via glutamic acid substitution. Global phospho-mass spectrometry showed Ser325 phosphorylation state alters downstream transcriptional activity through enrichment of Swi3p, Rsc8p, and Moira domain binding proteins, and next-generation sequencing revealed it differentially regulates the expression of chemokines and T cell activation pathways. Moreover, in vitro kinetic data suggest the modulation of activity depends on a cellular context. Finally, we begin to address the structural and mechanistic basis for the influence of Ser325 phosphorylation on the protein's properties by deuterium exchange mass spectrometry and NMR spectroscopy. In conclusion, this study explores the function of a novel phosphorylation site of PTPN22 that is involved in complex regulation of TCR signaling and provides details that might inform the future development of allosteric modulators of PTPN22.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 22 , Receptores de Antígenos de Linfocitos T , Transducción de Señal , Humanos , Fosforilación , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 22/metabolismo , Mutación con Ganancia de Función , Linfocitos T/metabolismo , Linfocitos T/inmunología , Células Jurkat , Células HEK293
11.
Development ; 149(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35686629

RESUMEN

The specification of distinct cardiac lineages occurs before chamber formation and acquisition of bona fide atrial or ventricular identity. However, the mechanisms underlying these early specification events remain poorly understood. Here, we performed single cell analysis at the murine cardiac crescent, primitive heart tube and heart tube stages to uncover the transcriptional mechanisms underlying formation of atrial and ventricular cells. We find that progression towards differentiated cardiomyocytes occurs primarily based on heart field progenitor identity, and that progenitors contribute to ventricular or atrial identity through distinct differentiation mechanisms. We identify new candidate markers that define such differentiation processes and examine their expression dynamics using computational lineage trajectory methods. We further show that exposure to exogenous retinoic acid causes defects in ventricular chamber size, dysregulation in FGF signaling and a shunt in differentiation towards orthogonal lineages. Retinoic acid also causes defects in cell-cycle exit resulting in formation of hypomorphic ventricles. Collectively, our data identify, at a single cell level, distinct lineage trajectories during cardiac specification and differentiation, and the precise effects of manipulating cardiac progenitor patterning via retinoic acid signaling.


Asunto(s)
Corazón , Tretinoina , Animales , Diferenciación Celular , Atrios Cardíacos , Ventrículos Cardíacos/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Tretinoina/metabolismo , Tretinoina/farmacología
12.
Cell Mol Life Sci ; 81(1): 29, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38212474

RESUMEN

Involution of the mammary gland after lactation is a dramatic example of coordinated cell death. Weaning causes distension of the alveolar structures due to the accumulation of milk, which, in turn, activates STAT3 and initiates a caspase-independent but lysosome-dependent cell death (LDCD) pathway. Although the importance of STAT3 and LDCD in early mammary involution is well established, it has not been entirely clear how milk stasis activates STAT3. In this report, we demonstrate that protein levels of the PMCA2 calcium pump are significantly downregulated within 2-4 h of experimental milk stasis. Reductions in PMCA2 expression correlate with an increase in cytoplasmic calcium in vivo as measured by multiphoton intravital imaging of GCaMP6f fluorescence. These events occur concomitant with the appearance of nuclear pSTAT3 expression but prior to significant activation of LDCD or its previously implicated mediators such as LIF, IL6, and TGFß3, all of which appear to be upregulated by increased intracellular calcium. We further demonstrate that increased intracellular calcium activates STAT3 by inducing degradation of its negative regulator, SOCS3. We also observed that milk stasis, loss of PMCA2 expression and increased intracellular calcium levels activate TFEB, an important regulator of lysosome biogenesis through a process involving inhibition of CDK4/6 and cell cycle progression. In summary, these data suggest that intracellular calcium serves as an important proximal biochemical signal linking milk stasis to STAT3 activation, increased lysosomal biogenesis, and lysosome-mediated cell death.


Asunto(s)
Calcio , Leche , Femenino , Animales , Leche/metabolismo , Calcio/metabolismo , Muerte Celular , Lactancia , Lisosomas/metabolismo , Glándulas Mamarias Animales/metabolismo , Factor de Transcripción STAT3/metabolismo
13.
Br J Haematol ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811363

RESUMEN

Circulating tumour DNA (ctDNA) allows genotyping and minimal residual disease (MRD) detection in lymphomas. Using a next-generation sequencing (NGS) approach (EuroClonality-NDC), we evaluated the clinical and prognostic value of ctDNA in a series of R-CHOP-treated diffuse large B-cell lymphoma (DLBCL) patients at baseline (n = 68) and after two cycles (n = 59), monitored by metabolic imaging (positron emission tomography combined with computed tomography [PET/CT]). A molecular marker was identified in 61/68 (90%) ctDNA samples at diagnosis. Pretreatment high ctDNA levels significantly correlated with elevated lactate dehydrogenase, advanced stage, high-risk International Prognostic Index and a trend to shorter 2-year progression-free survival (PFS). Valuable NGS data after two cycles of treatment were obtained in 44 cases, and 38 achieved major molecular response (MMR; 2.5-log drop in ctDNA). PFS curves displayed statistically significant differences among those achieving MMR versus those not achieving MMR (2-year PFS of 76% vs. 0%, p < 0.001). Similarly, more than 66% reduction in ΔSUVmax by PET/CT identified two subgroups with different prognosis (2-year PFS of 83% vs. 38%; p < 0.001). Combining both approaches MMR and ΔSUVmax reduction, a better stratification was observed (2-year PFS of 84% vs. 17% vs. 0%, p < 0.001). EuroClonality-NDC panel allows the detection of a molecular marker in the ctDNA in 90% of DLBCL. ctDNA reduction at two cycles and its combination with interim PET results improve patient prognosis stratification.

14.
Small ; 20(7): e2305865, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37798672

RESUMEN

2D semiconductors (2SEM) can transform many sectors, from information and communication technology to healthcare. To date, top-down approaches to their fabrication, such as exfoliation of bulk crystals by "scotch-tape," are widely used, but have limited prospects for precise engineering of functionalities and scalability. Here, a bottom-up technique based on epitaxy is used to demonstrate high-quality, wafer-scale 2SEM based on the wide band gap gallium selenide (GaSe) compound. GaSe layers of well-defined thickness are developed using a bespoke facility for the epitaxial growth and in situ studies of 2SEM. The dominant centrosymmetry and stacking of the individual van der Waals layers are verified by theory and experiment; their optical anisotropy and resonant absorption in the UV spectrum are exploited for photon sensing in the technological UV-C spectral range, offering a scalable route to deep-UV optoelectronics.

15.
Clin Transplant ; 38(1): e15222, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38064310

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is a significant cause of oncologic mortality worldwide. Liver transplantation represents a curative option for patients with significant liver dysfunction and absence of metastases. However, this therapeutic option is associated with significant blood loss and frequently requires various transfusions and intraoperative blood salvage for autotransfusion (IBS-AT) with or without a leukocyte reduction filter. This study aimed to analyze available evidence on long-term oncologic outcomes of patients undergoing liver transplantation for HCC with and without IBS-AT. METHODS: Per PRISMA guidelines, a systematic review of keywords "Blood Salvage," "Auto-transfusion," "Hepatocellular carcinoma," and "Liver-transplant" was conducted in PubMed, EMBASE, and SCOPUS. Studies comparing operative and postoperative outcomes were screened and analyzed for review. RESULTS: Twelve studies totaling 1704 participants were included for analysis. Length of stay, recurrence rates, and overall survival were not different between IBS-AT group and non IBS-AT group. CONCLUSION: IBS-AT use is not associated with increased risk of recurrence in liver transplant for HCC even without leukocyte filtration. Both operative and postoperative outcomes are similar between groups. Comparison of analyzed studies suggest that IBS-AT is safe for use during liver transplant for HCC.


Asunto(s)
Carcinoma Hepatocelular , Síndrome del Colon Irritable , Neoplasias Hepáticas , Trasplante de Hígado , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Transfusión de Sangre Autóloga/efectos adversos , Trasplante de Hígado/efectos adversos , Síndrome del Colon Irritable/etiología , Recurrencia Local de Neoplasia/etiología , Recurrencia Local de Neoplasia/cirugía , Estudios Retrospectivos
16.
Environ Sci Technol ; 58(24): 10685-10695, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38839422

RESUMEN

Air pollution exposure is typically assessed at the front door where people live in large-scale epidemiological studies, overlooking individuals' daily mobility out-of-home. However, there is limited evidence that incorporating mobility data into personal air pollution assessment improves exposure assessment compared to home-based assessments. This study aimed to compare the agreement between mobility-based and home-based assessments with personal exposure measurements. We measured repeatedly particulate matter (PM2.5) and black carbon (BC) using a sample of 41 older adults in the Netherlands. In total, 104 valid 24 h average personal measurements were collected. Home-based exposures were estimated by combining participants' home locations and temporal-adjusted air pollution maps. Mobility-based estimates of air pollution were computed based on smartphone-based tracking data, temporal-adjusted air pollution maps, indoor-outdoor penetration, and travel mode adjustment. Intraclass correlation coefficients (ICC) revealed that mobility-based estimates significantly improved agreement with personal measurements compared to home-based assessments. For PM2.5, agreement increased by 64% (ICC: 0.39-0.64), and for BC, it increased by 21% (ICC: 0.43-0.52). Our findings suggest that adjusting for indoor-outdoor pollutant ratios in mobility-based assessments can provide more valid estimates of air pollution than the commonly used home-based assessments, with no added value observed from travel mode adjustments.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Exposición a Riesgos Ambientales , Material Particulado , Humanos , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Países Bajos , Monitoreo del Ambiente/métodos , Masculino , Femenino , Anciano
17.
J Pediatr Gastroenterol Nutr ; 78(4): 836-845, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38344848

RESUMEN

OBJECTIVE: Analyze fecal and blood samples at point of diagnosis in IgE mediated cow's milk protein allergy (CMPA) and non-IgE mediated (NIM)-CMPA patients to look for potential new biomarkers. PATIENTS AND METHODS: Fourteen patients with IgE mediated CMPA and 13 with NIM-CMPA were recruited in three hospitals in the north of Spain, and were compared with 25 infants from a control group of the same age range. To characterize intestinal microbiota, 16S rDNA gene and internal transcribed spacer amplicons of bifidobacteria were sequenced with Illumina technology. Fatty acids were analyzed by gas chromatography, meanwhile intestinal inflammation markers were quantified by enzyme-linked immunosorbent assay and a multiplex system. Immunological analysis of blood was performed by flow cytometry. RESULTS: The fecal results obtained in the NIM-CMPA group stand out. Among them, a significant reduction in the abundance of Bifidobacteriaceae and Bifidobacterium sequences with respect to controls was observed. Bifidobacterial species were also different, highlighting the lower abundance of Bifidobacterium breve sequences. Fecal calprotectin levels were found to be significantly elevated in relation to IgE mediated patients. Also, a higher excretion of IL-10 and a lower excretion of IL-1ra and platelet derived growth factor-BB was found in NIM-CMPA patients. CONCLUSIONS: The differential fecal parameters found in NIM-CMPA patients could be useful in the diagnosis of NIM food allergy to CM proteins.


Asunto(s)
Hipersensibilidad a los Alimentos , Microbioma Gastrointestinal , Hipersensibilidad a la Leche , Lactante , Femenino , Animales , Humanos , Bovinos , Inmunoglobulina E , Hipersensibilidad a la Leche/diagnóstico , Proteínas de la Leche
18.
Environ Res ; 248: 118242, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38242419

RESUMEN

Exposure to ultrafine particles (UFPs) has been associated with multiple adverse health effects. Inhaled UFPs could reach the gastrointestinal tract and influence the composition of the gut microbiome. We have previously shown that oral ingestion of UFPs alters the gut microbiome and promotes intestinal inflammation in hyperlipidemic Ldlr-/- mice. Particulate matter (PM)2.5 inhalation studies have also demonstrated microbiome shifts in normolipidemic C57BL/6 mice. However, it is not known whether changes in microbiome precede or follow inflammatory effects in the intestinal mucosa. We hypothesized that inhaled UFPs modulate the gut microbiome prior to the development of intestinal inflammation. We studied the effects of UFP inhalation on the gut microbiome and intestinal mucosa in two hyperlipidemic mouse models (ApoE-/- mice and Ldlr-/- mice) and normolipidemic C57BL/6 mice. Mice were exposed to PM in the ultrafine-size range by inhalation for 6 h a day, 3 times a week for 10 weeks at a concentration of 300-350 µg/m3.16S rRNA gene sequencing was performed to characterize sequential changes in the fecal microbiome during exposures, and changes in the intestinal microbiome at the end. PM exposure led to progressive differentiation of the microbiota over time, associated with increased fecal microbial richness and evenness, altered microbial composition, and differentially abundant microbes by week 10 depending on the mouse model. Cross-sectional analysis of the small intestinal microbiome at week 10 showed significant changes in α-diversity, ß-diversity, and abundances of individual microbial taxa in the two hyperlipidemic models. These alterations of the intestinal microbiome were not accompanied, and therefore could not be caused, by increased intestinal inflammation as determined by histological analysis of small and large intestine, cytokine gene expression, and levels of fecal lipocalin. In conclusion, 10-week inhalation exposures to UFPs induced taxonomic changes in the microbiome of various animal models in the absence of intestinal inflammation.


Asunto(s)
Contaminantes Atmosféricos , Microbioma Gastrointestinal , Ratones , Animales , Material Particulado/análisis , Contaminantes Atmosféricos/toxicidad , Exposición por Inhalación/análisis , ARN Ribosómico 16S , Estudios Transversales , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Inflamación/inducido químicamente
19.
Surg Endosc ; 38(1): 390-399, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37803185

RESUMEN

INTRODUCTION: We introduced the robotic NICE procedure for left-sided colorectal resection in 2018 in which the entire procedure is performed without loss of pneumoperitoneum and without an abdominal wall incision by performing natural orifice-assisted transrectal extraction of the specimen and intracorporeal anastomosis. We compare the results of the NICE procedure versus conventional laparoscopic resection, which was our standard approach prior to 2018. METHODS: A matched pair case-control study compared patients following the NICE procedure versus those who underwent laparoscopic left-sided colorectal resection with conventional extracorporeal-assisted technique. Cases were performed at an Academic Medical Center and recorded in a prospective database to analyze perioperative outcomes. RESULTS: From a total cohort of 352 patients, 83 were matched in each group. When comparing the NICE procedure vs. the Extracorporeal-Assisted laparoscopic group, there were no significant differences in age (58.5 vs. 59.3 years old), sex (47 vs. 42 Female), body mass index (27.4 vs. 27.5 kg/m2), ASA, diagnosis, or type of surgery. Operative time (198.8 vs. 197.7 min), blood loss (56.0 vs. 53.3 ml), intraoperative complications (0.0% vs. 0.0%), and conversion rates (0.0% vs. 0.0%) were similar in both groups. The NICE procedure was associated with significantly earlier return of bowel function (40.7 vs. 23.6 h), shorter length of stay (3.1 vs. 2.2 days), and lower total opioid use (94.6 vs. 70.5 morphine milligram equivalents). Overall, there were no differences in postoperative abscess formation, complications, readmission, or reoperation rates. CONCLUSION: When compared to conventional laparoscopic resection, the NICE procedure is associated with short-term benefits including earlier recovery and less opioid use without increased operative time or increased risk of complications. Multicenter studies are recommended to validate benefits and limitations of this technique.


Asunto(s)
Neoplasias Colorrectales , Laparoscopía , Procedimientos Quirúrgicos Robotizados , Humanos , Femenino , Persona de Mediana Edad , Estudios de Casos y Controles , Procedimientos Quirúrgicos Robotizados/efectos adversos , Procedimientos Quirúrgicos Robotizados/métodos , Analgésicos Opioides , Estudios Retrospectivos , Laparoscopía/métodos , Estudios de Cohortes , Anastomosis Quirúrgica/métodos , Resultado del Tratamiento , Colectomía/métodos
20.
Mol Cell Proteomics ; 21(3): 100194, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35017099

RESUMEN

As systems biology approaches to virology have become more tractable, highly studied viruses such as HIV can now be analyzed in new unbiased ways, including spatial proteomics. We employed here a differential centrifugation protocol to fractionate Jurkat T cells for proteomic analysis by mass spectrometry; these cells contain inducible HIV-1 genomes, enabling us to look for changes in the spatial proteome induced by viral gene expression. Using these proteomics data, we evaluated the merits of several reported machine learning pipelines for classification of the spatial proteome and identification of protein translocations. From these analyses, we found that classifier performance in this system was organelle dependent, with Bayesian t-augmented Gaussian mixture modeling outperforming support vector machine learning for mitochondrial and endoplasmic reticulum proteins but underperforming on cytosolic, nuclear, and plasma membrane proteins by QSep analysis. We also observed a generally higher performance for protein translocation identification using a Bayesian model, Bayesian analysis of differential localization experiments, on row-normalized data. Comparative Bayesian analysis of differential localization experiment analysis of cells induced to express the WT viral genome versus cells induced to express a genome unable to express the accessory protein Nef identified known Nef-dependent interactors such as T-cell receptor signaling components and coatomer complex. Finally, we found that support vector machine classification showed higher consistency and was less sensitive to HIV-dependent noise. These findings illustrate important considerations for studies of the spatial proteome following viral infection or viral gene expression and provide a reference for future studies of HIV-gene-dropout viruses.


Asunto(s)
Infecciones por VIH , VIH-1 , Teorema de Bayes , Infecciones por VIH/metabolismo , VIH-1/genética , Humanos , Proteoma/metabolismo , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA