Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Psychiatry Neurosci ; 41(5): 342-53, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27045550

RESUMEN

BACKGROUND: Altered levels of urocortin 1 (Ucn1) in the centrally projecting Edinger-Westphal nucleus (EWcp) of depressed suicide attempters or completers mediate the brain's response to stress, while the mechanism regulating Ucn1 expression is unknown. We tested the hypothesis that microRNAs (miRNAs), which are vital fine-tuners of gene expression during the brain's response to stress, have the capacity to modulate Ucn1 expression. METHODS: Computational analysis revealed that the Ucn1 3' untranslated region contained a conserved binding site for miR-326. We examined miR-326 and Ucn1 levels in the EWcp of depressed suicide completers. In addition, we evaluated miR-326 and Ucn1 levels in the serum and the EWcp of a chronic variable mild stress (CVMS) rat model of behavioural despair and after recovery from CVMS, respectively. Gain and loss of miR-326 function experiments examined the regulation of Ucn1 by this miRNA in cultured midbrain neurons. RESULTS: We found reduced miR-326 levels concomitant with elevated Ucn1 levels in the EWcp of depressed suicide completers as well as in the EWcp of CVMS rats. In CVMS rats fully recovered from stress, both serum and EWcp miR-326 levels rebounded to nonstressed levels. While downregulation of miR-326 levels in primary midbrain neurons enhanced Ucn1 expression levels, miR-326 overexpression selectively reduced the levels of this neuropeptide. LIMITATIONS: This study lacked experiments showing that in vivo alteration of miR-326 levels alleviate depression-like behaviours. We show only correlative data for miR-325 and cocaine- and amphetamine-regulated transcript levels in the EWcp. CONCLUSION: We identified miR-326 dysregulation in depressed suicide completers and characterized this miRNA as an upstream regulator of the Ucn1 neuropeptide expression in midbrain neurons.


Asunto(s)
Trastorno Depresivo/metabolismo , Mesencéfalo/metabolismo , MicroARNs/metabolismo , Urocortinas/metabolismo , Adulto , Animales , Sitios de Unión , Células Cultivadas , Enfermedad Crónica , Simulación por Computador , Modelos Animales de Enfermedad , Regulación hacia Abajo , Humanos , Masculino , Persona de Mediana Edad , Neuronas/metabolismo , ARN Mensajero/metabolismo , Ratas Wistar , Estrés Psicológico , Suicidio
2.
Front Mol Neurosci ; 6: 53, 2013 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-24415997

RESUMEN

Recent studies have emphasized an important role for long non-coding RNAs (lncRNA) in epigenetic regulation, development, and disease. Despite growing interest in lncRNAs, the mechanisms by which lncRNAs control cellular processes are still elusive. Improved understanding of these mechanisms is critical, because the majority of the mammalian genome is transcribed, in most cases resulting in non-coding RNA products. Recent studies have suggested the involvement of lncRNA in neurobehavioral and neurodevelopmental disorders, highlighting the functional importance of this subclass of brain-enriched RNAs. Impaired expression of lnRNAs has been implicated in several forms of intellectual disability disorders. However, the role of this family of RNAs in cognitive function is largely unknown. Here we provide an overview of recently identified mechanisms of neuronal development involving lncRNAs, and the consequences of lncRNA deregulation for neurodevelopmental disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA