Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(51): 32722-32730, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33293415

RESUMEN

Nitrogen (N) is an essential macronutrient for microalgae, influencing their productivity, composition, and growth dynamics. Despite the dramatic consequences of N starvation, many free-living and endosymbiotic microalgae thrive in N-poor and N-fluctuating environments, giving rise to questions about the existence and nature of their long-term N reserves. Our understanding of these processes requires a unequivocal identification of the N reserves in microalgal cells as well as their turnover kinetics and subcellular localization. Herein, we identified crystalline guanine as the enigmatic large-capacity and rapid-turnover N reserve of microalgae. The identification was unambiguously supported by confocal Raman, fluorescence, and analytical transmission electron microscopies as well as stable isotope labeling. We discovered that the storing capacity for crystalline guanine by the marine dinoflagellate Amphidiniumcarterae was sufficient to support N requirements for several new generations. We determined that N reserves were rapidly accumulated from guanine available in the environment as well as biosynthesized from various N-containing nutrients. Storage of exogenic N in the form of crystalline guanine was found broadly distributed across taxonomically distant groups of microalgae from diverse habitats, from freshwater and marine free-living forms to endosymbiotic microalgae of reef-building corals (Acropora millepora, Euphyllia paraancora). We propose that crystalline guanine is the elusive N depot that mitigates the negative consequences of episodic N shortage. Guanine (C5H5N5O) may act similarly to cyanophycin (C10H19N5O5) granules in cyanobacteria. Considering the phytoplankton nitrogen pool size and dynamics, guanine is proposed to be an important storage form participating in the global N cycle.


Asunto(s)
Guanina/metabolismo , Microalgas/química , Microalgas/metabolismo , Nitrógeno/metabolismo , Animales , Antozoos , Regiones Árticas , Cristalización , Dinoflagelados/química , Dinoflagelados/metabolismo , Ecosistema , Guanina/química , Cinética , Microscopía Electrónica de Transmisión , Microscopía Óptica no Lineal/métodos , Simbiosis , Clima Tropical
2.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37446166

RESUMEN

Pharmaceuticals including antibiotics are among the hazardous micropollutants (HMP) of the environment. Incomplete degradation of the HMP leads to their persistence in water bodies causing a plethora of deleterious effects. Conventional wastewater treatment cannot remove HMP completely and a promising alternative comprises biotechnologies based on microalgae. The use of immobilized microalgae in environmental biotechnology is advantageous since immobilized cultures allow the recycling of the microalgal cells, support higher cell densities, and boost tolerance of microalgae to stresses including HMP. Here, we report on a comparative study of HMP (exemplified by the antibiotic ceftriaxone, CTA) removal by suspended and chitosan-immobilized cells of Lobosphaera sp. IPPAS C-2047 in flasks and in a column bioreactor. The removal of CTA added in the concentration of 20 mg/L was as high as 65% (in the flasks) or 85% (in the bioreactor). The adsorption on the carrier and abiotic oxidation were the main processes contributing 65-70% to the total CTA removal, while both suspended and immobilized cells took up 25-30% of CTA. Neither the immobilization nor CTA affected the accumulation of arachidonic acid (ARA) by Lobosphaera sp. during bioreactor tests but the subsequent nitrogen deprivation increased ARA accumulation 2.5 and 1.7 times in the suspended and chitosan-immobilized microalgae, respectively. The study of the Lobosphaera sp. microbiome revealed that the immobilization of chitosan rather than the CTA exposure was the main factor displacing the taxonomic composition of the microbiome. The possibility and limitations of the use of chitosan-immobilized Lobosphaera sp. IPPAS C-2047 for HMP removal coupled with the production of valuable long-chain polyunsaturated fatty acids is discussed.


Asunto(s)
Quitosano , Chlorophyta , Microalgas , Microbiota , Ácido Araquidónico/metabolismo , Ceftriaxona , Quitosano/metabolismo , Chlorophyta/metabolismo , Ácidos Grasos/metabolismo , Microalgas/metabolismo , Biomasa
3.
Int J Mol Sci ; 24(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37239835

RESUMEN

Microalgae are naturally adapted to the fluctuating availability of phosphorus (P) to opportunistically uptake large amounts of inorganic phosphate (Pi) and safely store it in the cell as polyphosphate. Hence, many microalgal species are remarkably resilient to high concentrations of external Pi. Here, we report on an exception from this pattern comprised by a failure of the high Pi-resilience in strain Micractinium simplicissimum IPPAS C-2056 normally coping with very high Pi concentrations. This phenomenon occurred after the abrupt re-supplementation of Pi to the M. simplicissimum culture pre-starved of P. This was the case even if Pi was re-supplemented in a concentration far below the level toxic to the P-sufficient culture. We hypothesize that this effect can be mediated by a rapid formation of the potentially toxic short-chain polyphosphate following the mass influx of Pi into the P-starved cell. A possible reason for this is that the preceding P starvation impairs the capacity of the cell to convert the newly absorbed Pi into a "safe" storage form of long-chain polyphosphate. We believe that the findings of this study can help to avoid sudden culture crashes, and they are also of potential significance for the development of algae-based technologies for the efficient bioremoval of P from P-rich waste streams.


Asunto(s)
Chlorophyta , Microalgas , Fosfatos , Fósforo , Polifosfatos , Transporte Biológico
4.
Photochem Photobiol Sci ; 21(11): 2035-2051, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35918586

RESUMEN

Biotechnology of microalgae holds promise for sustainable using of phosphorus, a finite non-renewable resource. Responses of the green microalga Lobosphaera sp. IPPAS C-2047 to elevated inorganic phosphate (Pi) concentrations were studied. Polyphosphate (PolyP) accumulation and ultrastructural rearrangements were followed in Lobosphaera using light and electron microscopy and linked to the responses of the photosynthetic apparatus probed with chlorophyll fluorescence. High tolerance of Lobosphaera to ≤ 50 g L-1 Pi was accompanied by a retention of photosynthetic activity and specific induction of non-photochemical quenching (NPQ up to 4; Fv/Fm around 0.7). Acclimation of the Lobosphaera to the high Pi was accompanied by expansion of the thylakoid lumen and accumulation of the carbon-rich compounds. The toxic effect of the extremely high (100 g L-1) Pi inhibited the growth by ca. 60%, induced a decline in photosynthetic activity and NPQ along with contraction of the lumen, destruction of the thylakoids, and depletion of starch reserves. The Lobosphaera retained viability at the Pi in the range of 25-100 g L-1 showing moderate an increase of intracellular P content (to 4.6% cell dry weight). During the initial high Pi exposure, the vacuolar PolyP biosynthesis in Lobosphaera was impaired but recovered upon acclimation. Synthesis of abundant non-vacuolar PolyP inclusions was likely a manifestation of the emergency acclimation of the cells converting the Pi excess to less metabolically active PolyP. We conclude that the remarkable Pi tolerance of Lobosphaera IPPAS C-2047 is determined by several mechanisms including rapid conversion of the exogenic Pi into metabolically safe PolyP, the acclamatory changes in the cell population structure. Possible involvement of NPQ in the high Pi resilience of the Lobosphaera is discussed.


Asunto(s)
Chlorophyta , Microalgas , Fotosíntesis , Tilacoides , Fosfatos , Clorofila
5.
Plant Cell Physiol ; 60(6): 1205-1223, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668793

RESUMEN

Lobosphaera incisa is a green microalga that accumulates high levels of the valuable omega-6 long-chain polyunsaturated fatty acids (LC-PUFA) arachidonic acid (ARA, 20:4n-6) in triacylglycerols (TAG) under nitrogen (N) starvation. LC-PUFA accumulation is a rare trait in photosynthetic microalgae with insufficiently understood physiological significance. In this study, RNAi was attempted, for the first time in L. incisa, to produce knockdown lines for the Δ5 desaturase gene. Two lines, termed modified lines, which were isolated during screening for transgenic events, demonstrated alterations in their LC-PUFA profile, ARA-biosynthesis gene expression and lipid class distribution. In line M5-78, which appeared to carry a mutation in the Δ6 elongase gene, LC-PUFA were substituted by 18:3n-6 in all glycerolipids. Line M2-35, for which the exact genetic background has not been established, displayed a dramatic reduction in 20:4n-6, concomitant with an augmented proportion of 18:1n-9, in particular in the extraplastidial membrane lipids and TAG. The physiological responses of the modified lines to stressful conditions were compared with the wild type and the Δ5 desaturase mutant. In the N-replete cells of modified lines, the frequency of lipid droplets was reduced, while a number of starch grains increased, suggesting altered partitioning of assimilated carbon into reserve products. Furthermore, both lines exhibited reduced ability to accumulate TAG under N deprivation and recover from N starvation. Both lines demonstrated lower photosynthetic pigment contents, impairments in photosynthesis under a range of stressful conditions, and less efficient functioning of photoprotection under optimal conditions. Possible implications of fatty acids modifications in the stress response of L. incisa are addressed.


Asunto(s)
Chlorophyta/fisiología , Ácidos Grasos Insaturados/fisiología , Ácido Araquidónico/metabolismo , Chlorophyta/metabolismo , Chlorophyta/ultraestructura , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Ácidos Grasos Omega-6/metabolismo , Ácidos Grasos Omega-6/fisiología , Ácidos Grasos Insaturados/metabolismo , Regulación de la Expresión Génica de las Plantas , Microscopía Electrónica de Transmisión , Nitrógeno/deficiencia , Fotosíntesis , Estrés Fisiológico
6.
Photosynth Res ; 142(2): 229-240, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31302832

RESUMEN

Mitochondria-targeted antioxidants (also known as 'Skulachev Ions' electrophoretically accumulated by mitochondria) exert anti-ageing and ROS-protecting effects well documented in animal and human cells. However, their effects on chloroplast in photosynthetic cells and corresponding mechanisms are scarcely known. For the first time, we describe a dramatic quenching effect of (10-(6-plastoquinonyl)decyl triphenylphosphonium (SkQ1) on chlorophyll fluorescence, apparently mediated by redox interaction of SkQ1 with Mn cluster in Photosystem II (PSII) of chlorophyte microalga Chlorella vulgaris and disabling the oxygen-evolving complex (OEC). Microalgal cells displayed a vigorous uptake of SkQ1 which internal concentration built up to a very high level. Using optical and EPR spectroscopy, as well as electron donors and in silico molecular simulation techniques, we found that SkQ1 molecule can interact with Mn atoms of the OEC in PSII. This stops water splitting giving rise to potent quencher(s), e.g. oxidized reaction centre of PSII. Other components of the photosynthetic apparatus proved to be mostly intact. This effect of the Skulachev ions might help to develop in vivo models of photosynthetic cells with impaired OEC function but essentially intact otherwise. The observed phenomenon suggests that SkQ1 can be applied to study stress-induced damages to OEC in photosynthetic organisms.


Asunto(s)
Antioxidantes/metabolismo , Manganeso/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Cationes , Chlorella vulgaris/efectos de los fármacos , Chlorella vulgaris/metabolismo , Clorofila/metabolismo , Fluorescencia , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Luz , Simulación del Acoplamiento Molecular , Oxígeno/metabolismo , Plastoquinona/análogos & derivados , Plastoquinona/farmacología
7.
Physiol Plant ; 166(1): 251-263, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30561763

RESUMEN

In oxygenic phototrophs including unicellular algae, acclimation to and damage by diverse environmental stresses induce profound changes in the ultrastructural organization of the cell. These alterations reflect acclimation of the photosynthetic apparatus to unfavorable conditions (mainly reduction of the chloroplast and its membranal system) and rewiring of the photo-fixed carbon fluxes in the cell. These changes, eventually pursuing mitigation of the photooxidative damage risk, are manifested by the formation of diverse carbon-rich inclusions. Although the physiological and molecular basis of these processes are well understood, the ultrastructural manifestations of the stress responses are often fragmented and frequently controversial. This minireview attempts to generalize on the ultrastructural patterns accompanying stresses in the photosynthetic cell, involving the concerted rearrangements of its assimilatory and storage compartments. The changes characteristic of normal functioning and emergency reduction of the chloroplast thylakoids under harsh stress are also addressed. Special attention is paid to the manifestations of the engagement of photoprotection via active (energy-dependent non-photochemical quenching) and passive mechanisms (e.g. optical shielding by secondary carotenoids). We also underline the potentially important role of autophagy-like processes and provide a more integral view of ultrastructural rearrangements under stress.


Asunto(s)
Fotosíntesis/fisiología , Tilacoides/metabolismo , Cloroplastos/metabolismo
8.
Arch Microbiol ; 197(2): 181-95, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25239707

RESUMEN

A quantitative micromorphometric study of the cell compartment rearrangements was performed in a symbiotic chlorophyte Desmodesmus sp. 3Dp86E-1 grown on nitrogen (N) replete or N-free medium under 480 µmol PAR quanta m(-2) s(-1). The changes in the chloroplast, intraplastidial, and cytoplasmic inclusions induced by high light (HL) and N starvation were similar to those characteristic of free-living chlorophytes. The N-sufficient culture responded to HL by a transient swelling of the thylakoid lumen and a decline in photosynthetic efficiency followed by its recovery. In the N-starving cells, a more rapid expansion and thylakoid swelling occurred along with the irreversible decline in the photosynthetic efficiency. Differential induction of starch grains, oil bodies, and cell wall polysaccharides depending on the stress exposure and type was recorded. Tight relationships between the changes in the assimilatory and storage compartments in the stressed Desmodesmus sp. cells were revealed.


Asunto(s)
Chlorophyta/fisiología , Chlorophyta/efectos de la radiación , Luz , Nitrógeno/metabolismo , Carbono/análisis , Carbono/metabolismo , Pared Celular/metabolismo , Pared Celular/ultraestructura , Clorofila/análisis , Clorofila/metabolismo , Chlorophyta/ultraestructura , Microscopía Electrónica de Transmisión , Nitrógeno/análisis , Fotosíntesis/fisiología , Fotosíntesis/efectos de la radiación , Simbiosis , Tilacoides/metabolismo
9.
Protoplasma ; 261(5): 1051-1071, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38703269

RESUMEN

Microalgae are the richest source of natural carotenoids-accessory photosynthetic pigments used as natural antioxidants, safe colorants, and nutraceuticals. Microalga Bracteacoccus aggregatus IPPAS C-2045 responds to stresses, including high light, with carotenogenesis-gross accumulation of secondary carotenoids (the carotenoids structurally and energetically uncoupled from photosynthesis). Precise mechanisms of cytoplasmic transport and subcellular distribution of the secondary carotenoids under stress are still unknown. Using multimodal imaging combining micro-Raman imaging (MRI), fluorescent lifetime (τ) imaging (FLIM), and transmission electron microscopy (TEM), we monitored ultrastructural and biochemical rearrangements of B. aggregatus cells during the stress-induced carotenogenesis. MRI revealed a decline in the diversity of molecular surrounding of the carotenoids in the cells compatible with the relocation of the bulk of the carotenoids in the cell from functionally and structurally heterogeneous photosynthetic apparatus to the more homogenous lipid matrix of the oleosomes. Two-photon FLIM highlighted the pigment transformation in the cell during the stress-induced carotenogenesis. The structures co-localized with the carotenoids with shorter τ (mainly chloroplast) shrunk, whereas the structures harboring secondary carotenoids with longer τ (mainly oleosomes) expanded. These changes were in line with the ultrastructural data (TEM). Fluorescence of B. aggregatus carotenoids, either in situ or in acetone extracts, possessed a surprisingly long lifetime. We hypothesize that the extension of τ of the carotenoids is due to their aggregation and/or association with lipids and proteins. The propagation of the carotenoids with prolonged τ is considered to be a manifestation of the secondary carotenogenesis suitable for its non-invasive monitoring with multimodal imaging.


Asunto(s)
Carotenoides , Microalgas , Estrés Fisiológico , Carotenoides/metabolismo , Microalgas/metabolismo
10.
Plants (Basel) ; 10(12)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34961072

RESUMEN

The microalga Coelastrella rubescens dwells in habitats with excessive solar irradiation; consequently, it must accumulate diverse compounds to protect itself. We characterized the array of photoprotective compounds in C. rubescens. Toward this goal, we exposed the cells to high fluxes of visible light and UV-A and analyzed the ability of hydrophilic and hydrophobic extracts from the cells to absorb radiation. Potential light-screening compounds were profiled by thin layer chromatography and UPLC-MS. Coelastrella accumulated diverse carotenoids that absorbed visible light in the blue-green part of the spectrum and mycosporine-like amino acids (MAA) that absorbed the UV-A. It is the first report on the occurrence of MAA in Coelastrella. Two new MAA, named coelastrin A and coelastrin B, were identified. Transmission electron microscopy revealed the development of hydrophobic subcompartments under the high light and UV-A exposition. We also evaluate and discuss sporopollenin-like compounds in the cell wall and autophagy-like processes as the possible reason for the decrease in sunlight absorption by cells, in addition to inducible sunscreen accumulation. The results suggested that C. rubescens NAMSU R1 accumulates a broad range of valuable photoprotective compounds in response to UV-A and visible light irradiation, which indicates this strain as a potential producer for biotechnology.

11.
Front Plant Sci ; 11: 614846, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329680

RESUMEN

The green microalga Lobosphaera incisa accumulates triacylglycerols (TAGs) with exceptionally high levels of long-chain polyunsaturated fatty acid (LC-PUFA) arachidonic acid (ARA) under nitrogen (N) deprivation. Phosphorous (P) deprivation induces milder changes in fatty acid composition, cell ultrastructure, and growth performance. We hypothesized that the resource-demanding biosynthesis and sequestration of ARA-rich TAG in lipid droplets (LDs) are associated with the enhancement of catabolic processes, including membrane lipid turnover and autophagic activity. Although this work focuses mainly on N deprivation, a comparative analysis of N and P deprivation responses is included. The results of lipidomic profiling showed a differential impact of N and P deprivation on the reorganization of glycerolipids. The formation of TAG under N deprivation was associated with the enhanced breakdown of chloroplast glycerolipids and the formation of lyso-lipids. N-deprived cells displayed a profound reorganization of cell ultrastructure, including internalization of cellular material into autophagic vacuoles, concomitant with the formation of LDs, while P-deprived cells showed better cellular ultrastructural integrity. The expression of the hallmark autophagy protein ATG8 and the major lipid droplet protein (MLDP) genes were coordinately upregulated, but to different extents under either N or P deprivation. The expression of the Δ5-desaturase gene, involved in the final step of ARA biosynthesis, was coordinated with ATG8 and MLDP, exclusively under N deprivation. Concanamycin A, the inhibitor of vacuolar proteolysis and autophagic flux, suppressed growth and enhanced levels of ATG8 and TAG in N-replete cells. The proportions of ARA in TAG decreased with a concomitant increase in oleic acid under both N-replete and N-deprived conditions. The photosynthetic apparatus's recovery from N deprivation was impaired in the presence of the inhibitor, along with the delayed LD degradation. The GFP-ATG8 processing assay showed the release of free GFP in N-replete and N-deprived cells, supporting the existence of autophagic flux. This study provides the first insight into the homeostatic role of autophagy in L. incisa and points to a possible metabolic link between autophagy and ARA-rich TAG biosynthesis.

12.
Cells ; 9(9)2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825634

RESUMEN

To cope with fluctuating phosphorus (P) availability, cyanobacteria developed diverse acclimations, including luxury P uptake (LPU)-taking up P in excess of the current metabolic demand. LPU is underexplored, despite its importance for nutrient-driven rearrangements in aquatic ecosystems. We studied the LPU after the refeeding of P-deprived cyanobacterium Nostoc sp. PCC 7118 with inorganic phosphate (Pi), including the kinetics of Pi uptake, turnover of polyphosphate, cell ultrastructure, and gene expression. The P-deprived cells deployed acclimations to P shortage (reduction of photosynthetic apparatus and mobilization of cell P reserves). The P-starved cells capable of LPU exhibited a biphasic kinetic of the Pi uptake and polyphosphate formation. The first (fast) phase (1-2 h after Pi refeeding) occurred independently of light and temperature. It was accompanied by a transient accumulation of polyphosphate, still upregulated genes encoding high-affinity Pi transporters, and an ATP-dependent polyphosphate kinase. During the second (slow) phase, recovery from P starvation was accompanied by the downregulation of these genes. Our study revealed no specific acclimation to ample P conditions in Nostoc sp. PCC 7118. We conclude that the observed LPU phenomenon does not likely result from the activation of a mechanism specific for ample P conditions. On the contrary, it stems from slow disengagement of the low-P responses after the abrupt transition from low-P to ample P conditions.


Asunto(s)
Transporte Biológico/fisiología , Cianobacterias/metabolismo , Cianobacterias/ultraestructura , Fósforo/metabolismo , Expresión Génica , Humanos
13.
Plant Sci ; 283: 95-115, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31128719

RESUMEN

The green oleaginous microalga Lobosphaera incisa accumulates storage lipids triacylglycerols (TAG) enriched in the long-chain polyunsaturated fatty acid arachidonic acid under nitrogen (N) deprivation. In contrast, under phosphorous (P) deprivation, the production of the monounsaturated oleic acid prevails. We compared physiological responses, ultrastructural, and metabolic consequences of L. incisa acclimation to N and P deficiency to provide novel insights into the key determinants of ARA accumulation. Differential responses to nutrient deprivation on growth performance, carbon-to-nitrogen stoichiometry, membrane lipid composition and TAG accumulation were demonstrated. Ultrastructural analyses suggested a dynamic role for vacuoles in sustaining cell homeostasis under conditions of different nutrient availability and their involvement in autophagy in L. incisa. Paralleling ARA-rich TAG accumulation in lipid droplets, N deprivation triggered intensive chloroplast dismantling and promoted catabolic processes. Metabolome analysis revealed depletion of amino acids and pyrimidines, and repression of numerous biosynthetic hubs to favour TAG biosynthesis under N deprivation. Under P deprivation, despite the relatively low growth penalties, the presence of the endogenous P reserves and the characteristic lipid remodelling, metabolic signatures of energy deficiency were revealed. Metabolome adjustments to P deprivation included depletion in ATP and phosphorylated nucleotides, increased levels of TCA-cycle intermediates and osmoprotectants. We conclude that characteristic cellular and metabolome adjustments tailor the adaptive responses of L. incisa to N and P deprivation modulating its LC-PUFA production.


Asunto(s)
Ácido Araquidónico/metabolismo , Chlorophyta/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Microalgas/efectos de los fármacos , Nitrógeno/deficiencia , Fósforo/deficiencia , Chlorophyta/metabolismo , Chlorophyta/ultraestructura , Metabolómica , Microalgas/metabolismo , Microalgas/ultraestructura , Microscopía Electrónica , Microscopía Fluorescente , Triglicéridos/metabolismo
14.
Protoplasma ; 256(1): 261-277, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30083788

RESUMEN

In photosynthetic organisms including unicellular algae, acclimation to and damage by environmental stresses are readily apparent at the level of the photosynthetic apparatus. Phenotypic manifestations of the stress responses include rapid and dramatic reduction of photosynthetic activity and pigment content aimed at mitigating the risk of photooxidative damage. Although the physiological and molecular mechanisms of these events are well known, the ultrastructural picture of the stress responses is often elusive and frequently controversial. We analyzed an extensive set of transmission electron microscopy images of the microalgal cells obtained across species of Chlorophyta and in a wide range of growth conditions. The results of the analysis allowed us to pinpoint distinct ultrastructural changes typical of normal functioning and emergency reduction of the chloroplast membrane system under high light exposure and/or mineral nutrient starvation. We demonstrate the patterns of the stress-related ultrastructural changes including peculiar thylakoid rearrangements and autophagy-like processes and provide an outlook on their significance for implementation of the stress responses.


Asunto(s)
Clorofila/química , Microalgas/ultraestructura , Estrés Fisiológico
15.
PLoS One ; 13(12): e0208830, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30533056

RESUMEN

We established a new simple approach to study phosphorus (P) and nitrogen (N) reserves at subcellular level potentially applicable to various types of cells capable of accumulating P- and/or N-rich inclusions. Here, we report on using this approach for locating and assessing the abundance of the P and N reserves in microalgal and cyanobacterial cells. The approach includes separation of the signal from P- or N-rich structures from noise on the energy-filtered transmission electron microscopy (EFTEM) P- or N-maps. The separation includes (i) relative entropy estimation for each pixel of the map, (ii) binary thresholding of the map, and (iii) segmenting the image to assess the inclusion relative area and localization in the cell section. The separation is based on comparing the a posteriori probability that a pixel of the map contains information about the sample vs. Gaussian a priori probability that the pixel contains noise. The difference is expressed as relative entropy value for the pixel; positive values are characteristic of the pixels containing the payload information about the sample. This is the first known method for quantification and locating at a subcellular level P-rich and N-rich inclusions including tiny (< 180 nm) structures. We demonstrated the applicability of the proposed method both to the cells of eukaryotic green microalgae and cyanobacteria. Using the new method, we elucidated the heterogeneity of the studied cells in accumulation of P and N reserves across different species. The proposed approach will be handy for any cytological and microbiological study requiring a comparative assessment of subcellular distribution of cyanophycin, polyphosphates or other type of P- or N-rich inclusions. An added value is the potential of this approach for automation of the data processing and evaluation enabling an unprecedented increase of the EFTEM analysis throughput.


Asunto(s)
Microalgas/química , Energía Filtrada en la Transmisión por Microscopía Electrónica/métodos , Nitrógeno/análisis , Fósforo/análisis
16.
Protoplasma ; 254(3): 1323-1340, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27677801

RESUMEN

Vacuole is a multifunctional compartment central to a large number of functions (storage, catabolism, maintenance of the cell homeostasis) in oxygenic phototrophs including microalgae. Still, microalgal cell vacuole is much less studied than that of higher plants although knowledge of the vacuolar structure and function is essential for understanding physiology of nutrition and stress tolerance of microalgae. Here, we combined the advanced analytical and conventional transmission electron microscopy methods to obtain semi-quantitative, spatially resolved at the subcellular level information on elemental composition of the cell vacuoles in several free-living and symbiotic chlorophytes. We obtained a detailed record of the changes in cell and vacuolar ultrastructure in response to environmental stimuli under diverse conditions. We suggested that the vacuolar inclusions could be divided into responsible for storage of phosphorus (mainly in form of polyphosphate) and those accommodating non-protein nitrogen (presumably polyamine) reserves, respectively.The ultrastructural findings, together with the data on elemental composition of different cell compartments, allowed us to speculate on the role of the vacuolar membrane in the biosynthesis and sequestration of polyphosphate. We also describe the ultrastructural evidence of possible involvement of the tonoplast in the membrane lipid turnover and exchange of energy and metabolites between chloroplasts and mitochondria. These processes might play a significant role in acclimation in different stresses including nitrogen starvation and extremely high level of CO2 and might also be of importance for microalgal biotechnology. Advantages and limitations of application of analytical electron microscopy to biosamples such as microalgal cells are discussed.


Asunto(s)
Chlorophyta/metabolismo , Microalgas/metabolismo , Vacuolas/metabolismo , Vacuolas/ultraestructura , Fenómenos Fisiológicos Celulares , Chlorophyta/fisiología , Cloroplastos/metabolismo , Cuerpos de Inclusión/metabolismo , Espectroscopía de Resonancia Magnética , Microalgas/fisiología , Microscopía Electrónica de Transmisión
17.
FEMS Microbiol Ecol ; 92(4): fiw031, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26880784

RESUMEN

We report on common and strain-specific responses to nitrogen (N) starvation recorded in four closely related symbiotic Desmodesmus strains from taxonomically very distant animals (hydroids, a sponge and a polychaete) dwelling in the White Sea. A number of common for the studied strains and free-living microalgae as well as some specific patterns of acclimation to the N starvation were documented. The common responses included a slowdown of cell division, a reduction of photosynthetic apparatus and a vast expansion of storage subcompartments of the cell. Although these responses were qualitatively similar to those known in free-living chlorophytes, in the studied strains they occurred in a strain-specific manner. The specific N-starvation responses comprised formation of chloroplast envelope membrane twirls, thinning of the appressed thylakoid membranes and a loss of the luminal depositions and channeling of the fixed carbon to cell wall polysaccharide layer. Desmodesmus sp. from a hydroid featured a unique, among the studied strains, capability of 'emergency' degradation of Rubisco, apparently to salvage the N contained in this protein. The obtained results are discussed in view of the remarkable physiological plasticity of the symbiotic Desmodesmus spp. and their survival under the harsh conditions of the subarctic sea habitat.


Asunto(s)
Chlorophyta/metabolismo , Nitrógeno/deficiencia , Poliquetos/microbiología , Poríferos/microbiología , Simbiosis/fisiología , Animales , Carbono/metabolismo , División Celular/fisiología , Pared Celular/fisiología , Microalgas/fisiología , Microscopía Electrónica de Transmisión , Océanos y Mares , Fotosíntesis/fisiología , Pigmentos Biológicos/metabolismo , Tilacoides/metabolismo
18.
Protoplasma ; 252(2): 489-503, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25189657

RESUMEN

Similarity and diversity of the phenotype and nucleotide sequences of certain genome loci among the single-celled microalgae isolated from White Sea benthic invertebrates were studied to extend the knowledge of oxygenic photoautotrophs forming microbial communities associated with animals. We compared four Desmodesmus isolates (1Hp86E-2, 1Pm66B, 3Dp86E-1, 2Cl66E) from the sponge Halichondria panicea, trochophore larvae of the polychaete Phyllodoce maculata, and the hydroids Dynamena pumila and Coryne lovenii, respectively. The microalgae appeared to be very similar featuring the phenotypic and genetic traits characteristics of unicellular representatives of the genus Desmodesmus. At the same time, isolates from different animal species displayed certain differences in (i) the epistructure morphology; (ii) type and number of the inclusions such as interthylakoid starch grains and cytoplasmic oil bodies and (iii) fatty acid composition; in Desmodesmus sp. 1Hp86E-2, these differences were most pronounced. Phylogenetic analysis based on ITS1-5.8S rRNA-ITS2 and rbcL sequences showed that all isolates studied differ from known classified representatives of Desmodesmus combining a deletion in the conservative 5.8S rRNA gene and long AC-microsatellite repeats in the ITS1 whereas 1Hp86E-2 represented a distinct branch within this group.


Asunto(s)
Chlorophyta/fisiología , Microalgas/fisiología , Animales , Chlorophyta/ultraestructura , Ácidos Grasos/metabolismo , Larva/citología , Microalgas/ultraestructura , Océanos y Mares , Filogenia , Pigmentación , Poliquetos/citología , Poríferos/citología , Federación de Rusia , Simbiosis
19.
Mar Biotechnol (NY) ; 16(5): 495-501, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24807746

RESUMEN

A novel chlorophyte Desmodesmus sp. 3Dp86E-1 isolated from a White Sea hydroid Dynamena pumila was cultivated at CO2 levels from atmospheric (the 'low-CO2' conditions) to pure carbon dioxide (the 5, 20, and 100 % CO2 conditions) under high (480 µE/(m(2) s) PAR) light. After 7 days of cultivation, the '100 % CO2' (but not 5 or 20 % CO2) cells possessed ca. four times higher chlorophyll content per dry weight (DW) unit than the low-CO2 culture. The rate of CO2 fixation under 100 % CO2 comprised ca. 1.5 L/day per L culture volume. After a lag period which depended on the CO2 level, biomass accumulation and volumetric fatty acid (FA) content of the Desmodesmus sp. 3Dp86E-1 bubbled with CO2-enriched gas mixtures increased and was comparable to that of the culture continuously bubbled with air. Under the low-to-moderate CO2 conditions, the FA percentage of the algal cells increased (to 40 % DW) whereas under high-CO2 conditions, FA percentage did not exceed 15 % DW. A strong increase in oleate (18:1) proportion of total FA at the expense of linolenate (18:3) was recorded in the '100 % CO2' cells. Electron microscopy and pulse-amplitude-modulated chlorophyll fluorescence investigation revealed no damage to or significant downregulation of the photosynthetic apparatus in '100 % CO2' cells grown at the high-PAR irradiance. Possible mechanisms of high-CO2 tolerance of Desmodesmus sp. 3Dp86E-1 are discussed in view of its symbiotic origin and possible application for CO2 biomitigation.


Asunto(s)
Adaptación Biológica/fisiología , Dióxido de Carbono/metabolismo , Chlorophyta/crecimiento & desarrollo , Chlorophyta/metabolismo , Hidrozoos/microbiología , Simbiosis/fisiología , Animales , Biomasa , Chlorophyta/genética , Chlorophyta/ultraestructura , Ácidos Grasos/metabolismo , Microscopía Electrónica de Transmisión , Océanos y Mares , Federación de Rusia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA