Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 223: 115408, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36740151

RESUMEN

Increased environmental pollution is a critical issue that must be addressed. Photocatalytic, adsorption, and membrane filtration methods are suitable in environmental governance because of their high selectivity, low cost, environment-friendly nature, and excellent treatment efficiency. Graphitic carbon nitride (g-C3N4) quantum dots (QDs) have been considered as photocatalysts, adsorbents, and membrane materials for wastewater treatments, owing to their stability, adsorption capacity, photochemical properties, and low toxicity and cost. This review summarizes g-C3N4 QD synthesis techniques, operating parameters affecting the removal performance in the treatment process, modification effects with other semiconductors, and benefits and drawbacks of g-C3N4 QD-based materials. Furthermore, this review discusses the practical applications of g-C3N4 QDs as adsorbents, photocatalysts, and membrane materials for organic and inorganic contaminant treatments and their value-added product formation potential. Modified g-C3N4 QD-based material adsorbents, photocatalysts, and membranes present potentially applicable effects, such as removal of most waterborne contaminants. Excellent results were obtained for the reduction of methyl orange, bisphenol A, tetracycline, ciprofloxacin, phenol, rhodamine B, E. coli, and Hg. Overall, this paper provides comprehensive background on g-C3N4 QD-based materials and their diverse applications in wastewater treatment, and it presents a foundation for the enhancement of similar unique materials in the future.


Asunto(s)
Puntos Cuánticos , Aguas Residuales , Puntos Cuánticos/química , Conservación de los Recursos Naturales , Escherichia coli , Política Ambiental , Catálisis
2.
Artículo en Inglés | MEDLINE | ID: mdl-38604807

RESUMEN

Concerted efforts have been made in recent years to find solutions to water and wastewater treatment challenges and eliminate the difficulties associated with treatment methods. Various techniques are used to ensure the recycling and reuse of water resources. Owing to their excellent chemical, physical, and biological properties, nanomaterials play an important role when integrated into water/wastewater treatment technologies. Black phosphorus (BP) is a potential nanomaterial candidate for water and wastewater treatment, especially its monolayer 2D derivative called phosphorene. Phosphorene offers relative adjustability in its direct bandgap, high charge carrier mobility, and improved in-plane anisotropy compared to the most extensively studied 2D nanomaterials. In this study, we examined the physical and chemical characteristics and synthetic processes of BP and phosphorene. We provide an overview of the latest advancements in the main applications of BP and phosphorene in water/wastewater treatment, which are categorized as photocatalytic, adsorption, and membrane filtration processes. Additionally, we explore the existing difficulties in the integration of BP and phosphorene into water/wastewater treatment technologies and prospects for future research in this field. In summary, this review highlights the ongoing necessity for significant research efforts on the integration of BP and phosphorene in water and wastewater applications.

3.
Sci Total Environ ; 904: 166613, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659568

RESUMEN

As energy crisis is recognized as an increasingly serious concern, the topic on biohydrogen (bioH2) production, which is renewable and eco-friendly, appears to be a highly-demanding subject. Although bioH2 production technologies are still at the developmental stage, there are many reported works available on lab- and pilot-scale systems with a promising future. This paper presents various potential methods of bioH2 production using biomass resources and comparatively assesses them for environmental impacts with a special emphasis on the specific biological processes. The environmental impact factors are then normalized with the feature scaling and normalization methods to evaluate the environmental sustainability dimensions of each bioH2 production method. The results reveals that the photofermentation (PF) process is more environmentally sustainable than the other investigated biological and thermochemical processes, in terms of emissions, water-fossil-mineral uses, and health issues. The global warming potential (GWP) and acidification potential (AP) for the PF process are then found to be 1.88 kg-CO2 eq. and 3.61 g-SO2 eq., which become the lowest among all processes, including renewable energy-based H2 production processes. However, the dark fermentation-microbial electrolysis cell (DF-MEC) hybrid process is considered the most environmentally harmful technique, with the highest GWP value of 14.6 kg-CO2 eq. due to their superior electricity and heat requirements. The water conception potential (WCP) of 84.5 m3 and water scarcity footprint (WSF) of 3632.9 m3 for the DF-MEC process is also the highest compared to all other processes due to the huge amount of wastewater formation potential of the system. Finally, the overall rankings confirm that biological processes are primarily promising candidates to produce bioH2 from an environmentally friendly point of view.


Asunto(s)
Dióxido de Carbono , Hidrógeno , Fermentación , Ambiente , Agua
4.
Chemosphere ; 287(Pt 2): 132177, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34826904

RESUMEN

The carbonaceous materials have gained significant interest for the phosphorus species remediation and recovery in the last decade. Carbonaceous materials present many unique features, such as cost effective, availability, environmentally friendly, and high removal efficiency that make them a promising adsorbent. In this review, the recent application of carbonaceous materials including activated carbon (AC), graphene and graphene oxide (GO), lignin, carbon nanotubes (CNTs), and gC3N4 for phosphate removal and recovery were comprehensively summarized. The kinetics and isotherm models, removal mechanisms, and effects of operating parameters are reported. The reusability, lifetime of carbonaceous materials, and impact of modification were also considered. The modified carbonaceous materials have significantly high phosphate adsorption capacity compared to unmodified adsorbents. Namely, MgO-functionalized lignin-based bio-charcoal exhibited a 906.8 mg g-1 of capacity as the highest one among other reviewed materials. The modification of carbonaceous materials with various elements has been presented to improve the surface functional groups, surface area and charge, and pore volume and size. Among these loaded elements, iron has been effectively used to provide a prospect for magnetic recovery of the adsorbent as well as increase phosphate adsorption. Furthermore, the phosphate recovery methods, phosphate removal efficiency of carbonaceous materials, the limitations, important gaps in the literature, and future studies to enhance applicability of carbonaceous materials in real scale are also discussed.


Asunto(s)
Nanotubos de Carbono , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Cinética , Fosfatos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA