Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 291(2): 989-97, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26586915

RESUMEN

To translate the 13 mtDNA-encoded mRNAs involved in oxidative phosphorylation (OXPHOS), mammalian mitochondria contain a dedicated set of ribosomes comprising rRNAs encoded by the mitochondrial genome and mitochondrial ribosomal proteins (MRPs) that are encoded by nuclear genes and imported into the matrix. In addition to their role in the ribosome, several MRPs have auxiliary functions or have been implicated in other cellular processes like cell cycle regulation and apoptosis. For example, we have shown that human MRPL12 binds and activates mitochondrial RNA polymerase (POLRMT), and hence has distinct functions in the ribosome and mtDNA transcription. Here we provide concrete evidence that there are two mature forms of mammalian MRPL12 that are generated by a two-step cleavage during import, involving efficient cleavage by mitochondrial processing protease and a second inefficient or regulated cleavage by mitochondrial intermediate protease. We also show that knock-down of MRPL12 by RNAi results in instability of POLRMT, but not other primary mitochondrial transcription components, and a corresponding decrease in mitochondrial transcription rates. Knock-down of MRPL10, the binding partner of MRPL12 in the ribosome, results in selective degradation of the mature long form of MRPL12, but has no effect on POLRMT. We propose that the two forms of MRPL12 are involved in homeostatic regulation of mitochondrial transcription and ribosome biogenesis that likely contribute to cell cycle, growth regulation, and longevity pathways to which MRPL12 has been linked.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Mitocondriales/metabolismo , Proteolisis , Proteínas Ribosómicas/metabolismo , Empalme Alternativo/genética , Secuencia de Aminoácidos , Animales , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , Ratones , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , Transporte de Proteínas , Proteínas Ribosómicas/química , Ribosomas/metabolismo , Transcripción Genética
2.
J Biol Chem ; 287(16): 13194-205, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22367199

RESUMEN

J-proteins are obligate cochaperones of Hsp70s and stimulate their ATPase activity via the J-domain. Although the functions of J-proteins have been well understood in the context of Hsp70s, their additional co-evolved "physiological functions" are still elusive. We report here the solution structure and mechanism of novel iron-mediated functional roles of human Dph4, a type III J-protein playing a vital role in diphthamide biosynthesis and normal development. The NMR structure of Dph4 reveals two domains: a conserved J-domain and a CSL-domain connected via a flexible linker-helix. The linker-helix modulates the conformational flexibility between the two domains, regulating thereby the protein function. Dph4 exhibits a unique ability to bind iron in tetrahedral coordination geometry through cysteines of its CSL-domain. The oxidized Fe-Dph4 shows characteristic UV-visible and electron paramagnetic resonance spectral properties similar to rubredoxins. Iron-bound Dph4 (Fe-Dph4) also undergoes oligomerization, thus potentially functioning as a transient "iron storage protein," thereby regulating the intracellular iron homeostasis. Remarkably, Fe-Dph4 exhibits vital redox and electron carrier activity, which is critical for important metabolic reactions, including diphthamide biosynthesis. Further, we observed that Fe-Dph4 is conformationally better poised to perform Hsp70-dependent functions, thus underlining the significance of iron binding in Dph4. Yeast Jjj3, a functional ortholog of human Dph4 also shows a similar iron-binding property, indicating the conserved nature of iron sequestration across species. Taken together, our findings provide invaluable evidence in favor of additional co-evolved specialized functions of J-proteins, previously not well appreciated.


Asunto(s)
Evolución Molecular , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/metabolismo , Hierro/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Toxina Diftérica/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Levaduras/metabolismo , Dedos de Zinc/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA