Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Cell ; 76(6): 909-921.e3, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31676231

RESUMEN

Metabolic signaling to chromatin often underlies how adaptive transcriptional responses are controlled. While intermediary metabolites serve as co-factors for histone-modifying enzymes during metabolic flux, how these modifications contribute to transcriptional responses is poorly understood. Here, we utilize the highly synchronized yeast metabolic cycle (YMC) and find that fatty acid ß-oxidation genes are periodically expressed coincident with the ß-oxidation byproduct histone crotonylation. Specifically, we found that H3K9 crotonylation peaks when H3K9 acetylation declines and energy resources become limited. During this metabolic state, pro-growth gene expression is dampened; however, mutation of the Taf14 YEATS domain, a H3K9 crotonylation reader, results in de-repression of these genes. Conversely, exogenous addition of crotonic acid results in increased histone crotonylation, constitutive repression of pro-growth genes, and disrupted YMC oscillations. Together, our findings expose an unexpected link between metabolic flux and transcription and demonstrate that histone crotonylation and Taf14 participate in the repression of energy-demanding gene expression.


Asunto(s)
Acilcoenzima A/metabolismo , Metabolismo Energético , Regulación Fúngica de la Expresión Génica , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIID/metabolismo , Metabolismo Energético/genética , Ácidos Grasos/metabolismo , Histonas/genética , Homeostasis , Lisina , Oxidación-Reducción , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factor de Transcripción TFIID/genética , Transcripción Genética
2.
PLoS Genet ; 14(2): e1007216, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29462149

RESUMEN

Chromatin remodeling complexes are essential for gene expression programs that coordinate cell function with metabolic status. However, how these remodelers are integrated in metabolic stability pathways is not well known. Here, we report an expansive genetic screen with chromatin remodelers and metabolic regulators in Saccharomyces cerevisiae. We found that, unlike the SWR1 remodeler, the INO80 chromatin remodeling complex is composed of multiple distinct functional subunit modules. We identified a strikingly divergent genetic signature for the Ies6 subunit module that links the INO80 complex to metabolic homeostasis. In particular, mitochondrial maintenance is disrupted in ies6 mutants. INO80 is also needed to communicate TORC1-mediated signaling to chromatin, as ino80 mutants exhibit defective transcriptional profiles and altered histone acetylation of TORC1-responsive genes. Furthermore, comparative analysis reveals subunits of INO80 and mTORC1 have high co-occurrence of alterations in human cancers. Collectively, these results demonstrate that the INO80 complex is a central component of metabolic homeostasis that influences histone acetylation and may contribute to disease when disrupted.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Acetilación , Regulación Fúngica de la Expresión Génica , Inestabilidad Genómica/genética , Homeostasis/genética , Redes y Vías Metabólicas/genética , Organismos Modificados Genéticamente , Procesamiento Proteico-Postraduccional/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
Biochem J ; 467(3): 461-72, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25695398

RESUMEN

AMP-activated protein kinase (AMPK) occurs as heterotrimeric complexes in which a catalytic subunit (α1/α2) is bound to one of two ß subunits (ß1/ß2) and one of three γ subunits (γ1/γ2/γ3). The ability to selectively activate specific isoforms would be a useful research tool and a promising strategy to combat diseases such as cancer and Type 2 diabetes. We report that the AMPK activator PT-1 selectively increased the activity of γ1- but not γ3-containing complexes in incubated mouse muscle. PT-1 increased the AMPK-dependent phosphorylation of the autophagy-regulating kinase ULK1 (unc-51-like autophagy-activating kinase 1) on Ser555, but not proposed AMPK-γ3 substrates such as Ser231 on TBC1 (tre-2/USP6, BUB2, cdc16) domain family, member 1 (TBC1D1) or Ser212 on acetyl-CoA carboxylase subunit 2 (ACC2), nor did it stimulate glucose transport. Surprisingly, however, in human embryonic kidney (HEK) 293 cells expressing human γ1, γ2 or γ3, PT-1 activated all three complexes equally. We were unable to reproduce previous findings suggesting that PT-1 activates AMPK by direct binding between the kinase and auto-inhibitory domains (AIDs) of the α subunit. We show instead that PT-1 activates AMPK indirectly by inhibiting the respiratory chain and increasing cellular AMP:ATP and/or ADP:ATP ratios. Consistent with this mechanism, PT-1 failed to activate AMPK in HEK293 cells expressing an AMP-insensitive R299G mutant of AMPK-γ1. We propose that the failure of PT-1 to activate γ3-containing complexes in muscle is not an intrinsic feature of such complexes, but is because PT-1 does not increase cellular AMP:ATP ratios in the specific subcellular compartment(s) in which γ3 complexes are located.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Proteínas Quinasas Activadas por AMP/química , Acetil-CoA Carboxilasa/química , Acetil-CoA Carboxilasa/metabolismo , Adenosina Monofosfato/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Línea Celular , Transporte de Electrón/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Femenino , Glucosa/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribonucleótidos/farmacología
4.
Biochem J ; 459(2): 275-87, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24467442

RESUMEN

The insulin/IGF-1 (insulin-like growth factor 1)-activated protein kinase Akt (also known as protein kinase B) phosphorylates Ser487 in the 'ST loop' (serine/threonine-rich loop) within the C-terminal domain of AMPK-α1 (AMP-activated protein kinase-α1), leading to inhibition of phosphorylation by upstream kinases at the activating site, Thr172. Surprisingly, the equivalent site on AMPK-α2, Ser491, is not an Akt target and is modified instead by autophosphorylation. Stimulation of HEK (human embryonic kidney)-293 cells with IGF-1 caused reduced subsequent Thr172 phosphorylation and activation of AMPK-α1 in response to the activator A769662 and the Ca2+ ionophore A23187, effects we show to be dependent on Akt activation and Ser487 phosphorylation. Consistent with this, in three PTEN (phosphatase and tensin homologue deleted on chromosome 10)-null tumour cell lines (in which the lipid phosphatase PTEN that normally restrains the Akt pathway is absent and Akt is thus hyperactivated), AMPK was resistant to activation by A769662. However, full AMPK activation could be restored by pharmacological inhibition of Akt, or by re-expression of active PTEN. We also show that inhibition of Thr172 phosphorylation is due to interaction of the phosphorylated ST loop with basic side chains within the αC-helix of the kinase domain. Our findings reveal that a previously unrecognized effect of hyperactivation of Akt in tumour cells is to restrain activation of the LKB1 (liver kinase B1)-AMPK pathway, which would otherwise inhibit cell growth and proliferation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Regulación hacia Abajo/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Modelos Moleculares , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-akt/genética
5.
Biochem Soc Trans ; 42(1): 71-5, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24450630

RESUMEN

AMPK (AMP-activated protein kinase) is a cellular energy sensor that monitors the ratio of AMP/ATP, and possibly also ADP/ATP, inside cells. Once activated by falling cellular energy levels, it acts to restore energy homoeostasis by switching on catabolic pathways that generate ATP, while switching off anabolic pathways and other processes consuming ATP. AMPK is switched on by increases in AMP via three mechanisms, all of which are antagonized by ATP: (i) promotion of phosphorylation of Thr172 by upstream activating kinases; (ii) inhibition of dephosphorylation of Thr172 by phosphatases; and (iii) allosteric activation of the phosphorylated kinase. Recently, it has been proposed that the first two mechanisms are also triggered by ADP, which might be the physiological signal rather than AMP, and that the third mechanism may not be physiologically significant. We have re-evaluated these questions, and found that only mechanism (ii) is mimicked by ADP, and that ADP is also less potent than AMP, which we still believe to be the primary signal. We have also provided evidence that mechanism (iii), i.e. allosteric activation by AMP, is a quantitatively significant mechanism in intact cells.


Asunto(s)
Adenosina Monofosfato/fisiología , Adenilato Quinasa/fisiología , Adenilato Quinasa/química , Regulación Alostérica , Animales , Metabolismo Energético , Retroalimentación Fisiológica , Humanos , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional , Estructura Cuaternaria de Proteína
6.
Methods Mol Biol ; 1732: 239-253, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29480480

RESUMEN

AMP-activated protein kinase (AMPK) is extremely sensitive to cellular stress, so that nonphysiological activation of the kinase can readily occur during harvesting of cells or tissues. In this chapter we describe methods to harvest cells and tissues, and for kinase assays, that preserve the physiological activation status of AMPK as far as possible. Note that similar care with methods of cell or tissue harvesting is required when AMPK function is monitored by Western blotting, rather than by kinase assays. We also describe methods to determine whether compounds that activate AMPK in intact cells do so indirectly by interfering with cellular ATP synthesis or directly by binding to AMPK and, if the latter, whether this occurs by binding at the AMP-binding sites on the γ subunit or at the ADaM site located between the α and ß subunits.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Técnicas de Cultivo de Célula/métodos , Activadores de Enzimas/farmacología , Pruebas de Enzimas/métodos , Subunidades de Proteína/metabolismo , Proteínas ADAM/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Nucleótidos de Adenina/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/genética , Técnicas de Cultivo de Célula/instrumentación , Línea Celular , Activación Enzimática/efectos de los fármacos , Pruebas de Enzimas/instrumentación , Humanos , Ratones , Mutación , Fosforilación/efectos de los fármacos , Subunidades de Proteína/genética , Linfocitos T Citotóxicos
7.
Cell Rep ; 22(3): 611-623, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29346761

RESUMEN

Adaptive survival requires the coordination of nutrient availability with expenditure of cellular resources. For example, in nutrient-limited environments, 50% of all S. cerevisiae genes synchronize and exhibit periodic bursts of expression in coordination with respiration and cell division in the yeast metabolic cycle (YMC). Despite the importance of metabolic and proliferative synchrony, the majority of YMC regulators are currently unknown. Here, we demonstrate that the INO80 chromatin-remodeling complex is required to coordinate respiration and cell division with periodic gene expression. Specifically, INO80 mutants have severe defects in oxygen consumption and promiscuous cell division that is no longer coupled with metabolic status. In mutant cells, chromatin accessibility of periodic genes, including TORC1-responsive genes, is relatively static, concomitant with severely attenuated gene expression. Collectively, these results reveal that the INO80 complex mediates metabolic signaling to chromatin to restrict proliferation to metabolically optimal states.


Asunto(s)
División Celular/genética , Ensamble y Desensamble de Cromatina/genética , Cromatina/genética , ADN Helicasas/genética , ATPasas Asociadas con Actividades Celulares Diversas , Proteínas de Unión al ADN , Homeostasis
8.
Cell Chem Biol ; 24(7): 813-824.e4, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28625738

RESUMEN

SU6656, a Src kinase inhibitor, was reported to increase fat oxidation and reduce body weight in mice, with proposed mechanisms involving AMP-activated protein kinase (AMPK) activation via inhibition of phosphorylation of either LKB1 or AMPK by the Src kinase, Fyn. However, we report that AMPK activation by SU6656 is independent of Src kinases or tyrosine phosphorylation of LKB1 or AMPK and is not due to decreased cellular energy status or binding at the ADaM site on AMPK. SU6656 is a potent AMPK inhibitor, yet binding at the catalytic site paradoxically promotes phosphorylation of Thr172 by LKB1. This would enhance phosphorylation of downstream targets provided the lifetime of Thr172 phosphorylation was sufficient to allow dissociation of the inhibitor and subsequent catalysis prior to its dephosphorylation. By contrast, sorafenib, a kinase inhibitor in clinical use, activates AMPK indirectly by inhibiting mitochondrial metabolism and increasing cellular AMP:ADP and/or ADP:ATP ratios.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Indoles/farmacología , Niacinamida/análogos & derivados , Compuestos de Fenilurea/farmacología , Sulfonamidas/farmacología , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/genética , Regulación Alostérica , Sitios de Unión , Dominio Catalítico , Sistema Libre de Células , Activación Enzimática/efectos de los fármacos , Células HEK293 , Células HeLa , Humanos , Indanos/farmacología , Indoles/química , Indoles/metabolismo , Mutagénesis Sitio-Dirigida , Niacinamida/química , Niacinamida/metabolismo , Niacinamida/farmacología , Compuestos de Fenilurea/química , Compuestos de Fenilurea/metabolismo , Fosforilación/efectos de los fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Pirimidinas/farmacología , Sorafenib , Sulfonamidas/química , Sulfonamidas/metabolismo , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo
9.
Mol Cancer Res ; 14(8): 683-95, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27141100

RESUMEN

UNLABELLED: The AMP-activated protein kinase (AMPK) is activated by phosphorylation at Thr172, either by the tumor suppressor kinase LKB1 or by an alternate pathway involving the Ca(2+)/calmodulin-dependent kinase, CAMKK2. Increases in AMP:ATP and ADP:ATP ratios, signifying energy deficit, promote allosteric activation and net Thr172 phosphorylation mediated by LKB1, so that the LKB1-AMPK pathway acts as an energy sensor. Many tumor cells carry loss-of-function mutations in the STK11 gene encoding LKB1, but LKB1 reexpression in these cells causes cell-cycle arrest. Therefore, it was investigated as to whether arrest by LKB1 is caused by activation of AMPK or of one of the AMPK-related kinases, which are also dependent on LKB1 but are not activated by CAMKK2. In three LKB1-null tumor cell lines, treatment with the Ca(2+) ionophore A23187 caused a G1 arrest that correlated with AMPK activation and Thr172 phosphorylation. In G361 cells, expression of a truncated, Ca(2+)/calmodulin-independent CAMKK2 mutant also caused G1 arrest similar to that caused by expression of LKB1, while expression of a dominant-negative AMPK mutant, or a double knockout of both AMPK-α subunits, also prevented the cell-cycle arrest caused by A23187. These mechanistic findings confirm that AMPK activation triggers cell-cycle arrest, and also suggest that the rapid proliferation of LKB1-null tumor cells is due to lack of the restraining influence of AMPK. However, cell-cycle arrest can be restored by reexpressing LKB1 or a constitutively active CAMKK2, or by pharmacologic agents that increase intracellular Ca(2+) and thus activate endogenous CAMKK2. IMPLICATIONS: Evidence here reveals that the rapid growth and proliferation of cancer cells lacking the tumor suppressor LKB1 is due to reduced activity of AMPK, and suggests a therapeutic approach by which this block might be circumvented. Mol Cancer Res; 14(8); 683-95. ©2016 AACR.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Humanos , Fosforilación
10.
Mol Cell Biol ; 36(6): 979-91, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26755556

RESUMEN

ATP-dependent chromatin remodeling complexes are essential for transcription regulation, and yet it is unclear how these multisubunit complexes coordinate their activities to facilitate diverse transcriptional responses. In this study, we found that the conserved Arp5 and Ies6 subunits of the Saccharomyces cerevisiae INO80 chromatin-remodeler form an abundant and distinct subcomplex in vivo and stimulate INO80-mediated activity in vitro. Moreover, our genomic studies reveal that the relative occupancy of Arp5-Ies6 correlates with nucleosome positioning at transcriptional start sites and expression levels of >1,000 INO80-regulated genes. Notably, these genes are significantly enriched in energy metabolism pathways. Specifically, arp5Δ, ies6Δ, and ino80Δ mutants demonstrate decreased expression of genes involved in glycolysis and increased expression of genes in the oxidative phosphorylation pathway. Deregulation of these metabolic pathways results in constitutively elevated mitochondrial potential and oxygen consumption. Our results illustrate the dynamic nature of the INO80 complex assembly and demonstrate for the first time that a chromatin remodeler regulates glycolytic and respiratory capacity, thereby maintaining metabolic stability.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Redes y Vías Metabólicas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Cromosómicas no Histona/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Diabetes ; 65(9): 2784-94, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27381369

RESUMEN

Canagliflozin, dapagliflozin, and empagliflozin, all recently approved for treatment of type 2 diabetes, were derived from the natural product phlorizin. They reduce hyperglycemia by inhibiting glucose reuptake by sodium/glucose cotransporter (SGLT) 2 in the kidney, without affecting intestinal glucose uptake by SGLT1. We now report that canagliflozin also activates AMPK, an effect also seen with phloretin (the aglycone breakdown product of phlorizin), but not to any significant extent with dapagliflozin, empagliflozin, or phlorizin. AMPK activation occurred at canagliflozin concentrations measured in human plasma in clinical trials and was caused by inhibition of Complex I of the respiratory chain, leading to increases in cellular AMP or ADP. Although canagliflozin also inhibited cellular glucose uptake independently of SGLT2, this did not account for AMPK activation. Canagliflozin also inhibited lipid synthesis, an effect that was absent in AMPK knockout cells and that required phosphorylation of acetyl-CoA carboxylase (ACC) 1 and/or ACC2 at the AMPK sites. Oral administration of canagliflozin activated AMPK in mouse liver, although not in muscle, adipose tissue, or spleen. Because phosphorylation of ACC by AMPK is known to lower liver lipid content, these data suggest a potential additional benefit of canagliflozin therapy compared with other SGLT2 inhibitors.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Canagliflozina/farmacología , Glucosa/metabolismo , Mitocondrias/metabolismo , Transportador 2 de Sodio-Glucosa/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Inmunoprecipitación , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Fosforilación , Transportador 2 de Sodio-Glucosa/genética , Inhibidores del Cotransportador de Sodio-Glucosa 2
12.
Cell Metab ; 18(4): 556-66, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24093679

RESUMEN

While allosteric activation of AMPK is triggered only by AMP, binding of both ADP and AMP has been reported to promote phosphorylation and inhibit dephosphorylation at Thr172. Because cellular concentrations of ADP and ATP are higher than AMP, it has been proposed that ADP is the physiological signal that promotes phosphorylation and that allosteric activation is not significant in vivo. However, we report that: AMP is 10-fold more potent than ADP in inhibiting Thr172 dephosphorylation; only AMP enhances LKB1-induced Thr172 phosphorylation; and AMP can cause > 10-fold allosteric activation even at concentrations 1-2 orders of magnitude lower than ATP. We also provide evidence that allosteric activation by AMP can cause increased phosphorylation of acetyl-CoA carboxylase in intact cells under conditions in which there is no change in Thr172 phosphorylation. Thus, AMP is a true physiological regulator of AMPK, and allosteric regulation is an important component of the overall activation mechanism.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Monofosfato/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/genética , Acetil-CoA Carboxilasa/metabolismo , Adenosina Difosfato/farmacología , Adenosina Monofosfato/farmacología , Adenosina Trifosfato/farmacología , Regulación Alostérica/efectos de los fármacos , Animales , Berberina/farmacología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Línea Celular Tumoral , Sistema Libre de Células , Activación Enzimática , Humanos , Hígado/enzimología , Ratones , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA