Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
PLoS Pathog ; 18(9): e1010846, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36126089

RESUMEN

Protein export and host membrane remodeling are crucial for multiple Plasmodium species to establish a niche in infected hosts. To better understand the contribution of these processes to successful parasite infection in vivo, we sought to find and characterize protein components of the intraerythrocytic Plasmodium berghei-induced membrane structures (IBIS) that form in the cytoplasm of infected erythrocytes. We identified proteins that immunoprecipitate with IBIS1, a signature member of the IBIS in P. berghei-infected erythrocytes. In parallel, we also report our data describing proteins that co-precipitate with the PTEX (Plasmodium translocon of exported proteins) component EXP2. To validate our findings, we examined the location of three candidate IBIS1-interactors that are conserved across multiple Plasmodium species, and we found they localized to IBIS in infected red blood cells and two further colocalized with IBIS1 in the liver-stage parasitophorous vacuole membrane. Successful gene deletion revealed that these two tryptophan-rich domain-containing proteins, termed here IPIS2 and IPIS3 (for intraerythrocytic Plasmodium-induced membrane structures), are required for efficient blood-stage growth. Erythrocytes infected with IPIS2-deficient schizonts in particular fail to bind CD36 as efficiently as wild-type P. berghei-infected cells and therefore fail to effectively sequester out of the circulating blood. Our findings support the idea that intra-erythrocytic membrane compartments are required across species for alterations of the host erythrocyte that facilitate interactions of infected cells with host tissues.


Asunto(s)
Plasmodium berghei , Triptófano , Animales , Eritrocitos/parasitología , Plasmodium berghei/metabolismo , Plasmodium falciparum/genética , Transporte de Proteínas , Proteínas Protozoarias/metabolismo , Esquizontes/metabolismo , Triptófano/metabolismo
2.
BMC Genomics ; 22(1): 822, 2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34773979

RESUMEN

BACKGROUND: We benchmarked sequencing technology and assembly strategies for short-read, long-read, and hybrid assemblers in respect to correctness, contiguity, and completeness of assemblies in genomes of Francisella tularensis. Benchmarking allowed in-depth analyses of genomic structures of the Francisella pathogenicity islands and insertion sequences. Five major high-throughput sequencing technologies were applied, including next-generation "short-read" and third-generation "long-read" sequencing methods. RESULTS: We focused on short-read assemblers, hybrid assemblers, and analysis of the genomic structure with particular emphasis on insertion sequences and the Francisella pathogenicity island. The A5-miseq pipeline performed best for MiSeq data, Mira for Ion Torrent data, and ABySS for HiSeq data from eight short-read assembly methods. Two approaches were applied to benchmark long-read and hybrid assembly strategies: long-read-first assembly followed by correction with short reads (Canu/Pilon, Flye/Pilon) and short-read-first assembly along with scaffolding based on long reads (Unicyler, SPAdes). Hybrid assembly can resolve large repetitive regions best with a "long-read first" approach. CONCLUSIONS: Genomic structures of the Francisella pathogenicity islands frequently showed misassembly. Insertion sequences (IS) could be used to perform an evolutionary conservation analysis. A phylogenetic structure of insertion sequences and the evolution within the clades elucidated the clade structure of the highly conservative F. tularensis.


Asunto(s)
Francisella tularensis , Genoma Bacteriano , Elementos Transponibles de ADN , Francisella tularensis/genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Análisis de Secuencia de ADN
3.
Emerg Infect Dis ; 25(12): 2310-2314, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31742508

RESUMEN

We screened samples from common shrews (Sorex araneus) collected in Germany during 2004-2014 and identified 3 genetically divergent rotaviruses. Virus protein 6 sequence similarities to prototype rotaviruses were low (64.5% rotavirus A, 50.1% rotavirus C [tentative species K], 48.2% rotavirus H [tentative species L]). Shrew-associated rotaviruses might have zoonotic potential.


Asunto(s)
Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/virología , Infecciones por Rotavirus/veterinaria , Rotavirus , Musarañas/virología , Enfermedades de los Animales/historia , Animales , Genes Virales , Geografía Médica , Alemania/epidemiología , Secuenciación de Nucleótidos de Alto Rendimiento , Historia del Siglo XXI , Filogenia , ARN Viral
4.
J Virol ; 91(18)2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28659487

RESUMEN

The mumps virus (MuV) small hydrophobic protein (SH) is a type I membrane protein expressed in infected cells. SH has been reported to interfere with innate immunity by inhibiting tumor necrosis factor alpha (TNF-α)-mediated apoptosis and NF-κB activation. To elucidate the underlying mechanism, we generated recombinant MuVs (rMuVs) expressing the SH protein with an N-terminal FLAG epitope or lacking SH expression due to the insertion of three stop codons into the SH gene. Using these viruses, we were able to show that SH reduces the phosphorylation of IKKß, IκBα, and p65 as well as the translocation of p65 into the nucleus of infected A549 cells. Reporter gene assays revealed that SH interferes not only with TNF-α-mediated NF-κB activation but also with IL-1ß- and poly(I·C)-mediated NF-κB activation, and that this inhibition occurs upstream of the NF-κB pathway components TRAF2, TRAF6, and TAK1. Since SH coimmunoprecipitated with tumor necrosis factor receptor 1 (TNFR1), RIP1, and IRAK1, we hypothesize that SH exerts its inhibitory function by interacting with TNFR1, interleukin-1 receptor type 1 (IL-1R1), and TLR3 complexes in the plasma membrane of infected cells.IMPORTANCE The MuV SH has been shown to impede TNF-α-mediated NF-κB activation and is therefore thought to contribute to viral immune evasion. However, the mechanisms by which SH mediates NF-κB inhibition remained largely unknown. In this study, we show that SH interacts with TNFR1, IL-1R1, and TLR3 complexes in infected cells. We thereby not only shed light on the mechanisms of SH-mediated NF-κB inhibition but also reveal that SH interferes with NF-κB activation induced by interleukin-1ß (IL-1ß) and double-stranded RNA.


Asunto(s)
Interacciones Huésped-Patógeno , Virus de la Parotiditis/inmunología , FN-kappa B/antagonistas & inhibidores , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptor Toll-Like 3/metabolismo , Proteínas Virales/metabolismo , Animales , Línea Celular , Humanos , Receptores Tipo I de Interleucina-1
5.
Traffic ; 15(4): 362-82, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24423236

RESUMEN

For membrane-bound intracellular pathogens, the surrounding vacuole is the portal of communication with the host cell. The parasitophorous vacuole (PV) harboring intrahepatocytic Plasmodium parasites satisfies the parasites' needs of nutrition and protection from host defenses to allow the rapid parasite growth that occurs during the liver stage of infection. In this study, we visualized the PV membrane (PVM) and the associated tubovesicular network (TVN) through fluorescent tagging of two PVM-resident Plasmodium berghei proteins, UIS4 and IBIS1. This strategy revealed previously unrecognized dynamics with which these membranes extend throughout the host cell. We observed dynamic vesicles, elongated clusters of membranes and long tubules that rapidly extend and contract from the PVM in a microtubule-dependent manner. Live microscopy, correlative light-electron microscopy and fluorescent recovery after photobleaching enabled a detailed characterization of these membranous features, including velocities, the distribution of UIS4 and IBIS1, and the connectivity of PVM and TVN. Labeling of host cell compartments revealed association of late endosomes and lysosomes with the elongated membrane clusters. Moreover, the signature host autophagosome protein LC3 was recruited to the PVM and TVN and colocalized with UIS4. Together, our data demonstrate that the membranes surrounding intrahepatic Plasmodium are involved in active remodeling of host cells.


Asunto(s)
Hígado/parasitología , Plasmodium/metabolismo , Animales , Membrana Celular/metabolismo , Interacciones Huésped-Parásitos , Plasmodium/patogenicidad
7.
Front Microbiol ; 15: 1336532, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38659981

RESUMEN

Metagenomic sequencing is a promising method that has the potential to revolutionize the world of pathogen detection and antimicrobial resistance (AMR) surveillance in food-producing environments. However, the analysis of the huge amount of data obtained requires performant bioinformatics tools and databases, with intuitive and straightforward interpretation. In this study, based on long-read metagenomics data of chicken fecal samples with a spike-in mock community, we proposed confidence levels for taxonomic identification and AMR gene detection, with interpretation guidelines, to help with the analysis of the output data generated by KMA, a popular k-mer read alignment tool. Additionally, we demonstrated that the completeness and diversity of the genomes present in the reference databases are key parameters for accurate and easy interpretation of the sequencing data. Finally, we explored whether KMA, in a two-step procedure, can be used to link the detected AMR genes to their bacterial host chromosome, both detected within the same long-reads. The confidence levels were successfully tested on 28 metagenomics datasets which were obtained with sequencing of real and spiked samples from fecal (chicken, pig, and buffalo) or food (minced beef and food enzyme products) origin. The methodology proposed in this study will facilitate the analysis of metagenomics sequencing datasets for KMA users. Ultimately, this will contribute to improvements in the rapid diagnosis and surveillance of pathogens and AMR genes in food-producing environments, as prioritized by the EU.

8.
Microorganisms ; 11(8)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37630603

RESUMEN

The characterization of Shiga toxin-producing Escherichia coli (STEC) is necessary to assess their pathogenic potential, but isolation of the strain from complex matrices such as milk remains challenging. In previous work, we have shown the potential of long-read metagenomics to characterize eae-positive STEC from artificially contaminated raw milk without isolating the strain. The presence of multiple E. coli strains in the sample was shown to potentially hinder the correct characterization of the STEC strain. Here, we aimed at determining the STEC:commensal ratio that would prevent the characterization of the STEC. We artificially contaminated pasteurized milk with different ratios of an eae-positive STEC and a commensal E. coli and applied the method previously developed. Results showed that the STEC strain growth was better than the commensal E. coli after enrichment in acriflavine-supplemented BPW. The STEC was successfully characterized in all samples with at least 10 times more STEC post-enrichment compared to the commensal E. coli. However, the presence of equivalent proportions of STEC and commensal E. coli prevented the full characterization of the STEC strain. This study confirms the potential of long-read metagenomics for STEC characterization in an isolation-free manner while refining its limit regarding the presence of background E. coli strains.

9.
Virus Evol ; 8(1): veac004, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35169491

RESUMEN

Species A rotaviruses (RVAs) are important aetiological agents of severe diarrhoea in young children. They are also widely distributed in mammals and birds, and increasing evidence indicates the possibility of zoonotic transmission of RVA strains between animals and humans. Moreover, reassortment of the eleven segments of the RVA genome can result in rapid biological changes and may influence pathogenic properties. Here, the nearly complete genome of an RVA strain from a common shrew (Sorex araneus) was sequenced, which showed high nucleotide sequence similarity to additionally determined partial sequences from common shrew RVAs but only very low identity (below 68 per cent) to RVAs from other animal species and humans. New genotypes were assigned to most genome segments of the novel common shrew RVA strain KS14/269, resulting in the genome constellation G39-P[55]-I27-R26-C22-M22-A37-N26-T26-E30-H26. Phylogenetic analyses clustered the common shrew RVAs as ancestral branches of other mammalian and avian RVAs for most of the genome segments, which is in contrast to the phylogeny of the hosts. Nevertheless, conserved sequences typical for all RVAs were identified at the 5'- and 3'- non-coding segment termini. To explore whether the common shrew RVA can exchange genetic material with other mammalian RVAs by reassortment, a reverse genetics system based on the simian RVA strain SA11 was used. However, no viable reassortants could be rescued by exchanging the VP4-, VP6-, or VP7-encoding genome segment alone or in combinations. It can be concluded that highly divergent RVAs are present in common shrews, indicating an evolution of these viruses largely separated from other mammalian and avian RVAs. The zoonotic potential of the virus seems to be low but needs to be further analysed in future.

10.
Microb Genom ; 8(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36748417

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) are a cause of severe human illness and are frequently associated with haemolytic uraemic syndrome (HUS) in children. It remains difficult to identify virulence factors for STEC that absolutely predict the potential to cause human disease. In addition to the Shiga-toxin (stx genes), many additional factors have been reported, such as intimin (eae gene), which is clearly an aggravating factor for developing HUS. Current STEC detection methods classically rely on real-time PCR (qPCR) to detect the presence of the key virulence markers (stx and eae). Although qPCR gives an insight into the presence of these virulence markers, it is not appropriate for confirming their presence in the same strain. Therefore, isolation steps are necessary to confirm STEC viability and characterize STEC genomes. While STEC isolation is laborious and time-consuming, metagenomics has the potential to accelerate the STEC characterization process in an isolation-free manner. Recently, short-read sequencing metagenomics have been applied for this purpose, but assembly quality and contiguity suffer from the high proportion of mobile genetic elements occurring in STEC strains. To circumvent this problem, we used long-read sequencing metagenomics for identifying eae-positive STEC strains using raw cow's milk as a causative matrix for STEC food-borne outbreaks. By comparing enrichment conditions, optimizing library preparation for MinION sequencing and generating an easy-to-use STEC characterization pipeline, the direct identification of an eae-positive STEC strain was successful after enrichment of artificially contaminated raw cow's milk samples at a contamination level as low as 5 c.f.u. ml-1. Our newly developed method combines optimized enrichment conditions of STEC in raw milk in combination with a complete STEC analysis pipeline from long-read sequencing metagenomics data. This study shows the potential of the innovative methodology for characterizing STEC strains from complex matrices. Further developments will nonetheless be necessary for this method to be applied in STEC surveillance.


Asunto(s)
Leche , Escherichia coli Shiga-Toxigénica , Animales , Microbiología de Alimentos , Leche/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Toxina Shiga/genética , Escherichia coli Shiga-Toxigénica/aislamiento & purificación
11.
Front Genet ; 12: 742153, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956312

RESUMEN

Host cell remodeling is critical for successful Plasmodium replication inside erythrocytes and achieved by targeted export of parasite-encoded proteins. In contrast, during liver infection the malarial parasite appears to avoid protein export, perhaps to limit exposure of parasite antigens by infected liver cells. HSP101, the force-generating ATPase of the protein translocon of exported proteins (PTEX) is the only component that is switched off during early liver infection. Here, we generated transgenic Plasmodium berghei parasite lines that restore liver stage expression of HSP101. HSP101 expression in infected hepatocytes was achieved by swapping the endogenous promoter with the ptex150 promoter and by inserting an additional copy under the control of the elongation one alpha (ef1α) promoter. Both promoters drive constitutive and, hence, also pre-erythrocytic expression. Transgenic parasites were able to complete the life cycle, but failed to export PEXEL-proteins in early liver stages. Our results suggest that PTEX-dependent early liver stage export cannot be restored by addition of HSP101, indicative of alternative export complexes or other functions of the PTEX core complex during liver infection.

12.
Microb Genom ; 7(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33945456

RESUMEN

Metagenomics is a valuable diagnostic tool for enhancing microbial food safety because (i) it enables the untargeted detection of pathogens, (ii) it is fast since primary isolation of micro-organisms is not required, and (iii) it has high discriminatory power allowing for a detailed molecular characterization of pathogens. For shotgun metagenomics, total nucleic acids (NAs) are isolated from complex samples such as foodstuff. Along with microbial NAs, high amounts of matrix NAs are extracted that might outcompete microbial NAs during next-generation sequencing and compromise sensitivity for the detection of low abundance micro-organisms. Sensitive laboratory methods are indispensable for detecting highly pathogenic foodborne bacteria like Brucella spp., because a low infectious dose is sufficient to cause human disease through the consumption of contaminated dairy or meat products. In our study, we applied shotgun metagenomic sequencing for the identification and characterization of Brucella spp. in artificially and naturally contaminated raw milk from various ruminant species. With the depletion of eukaryotic cells prior to DNA extraction, Brucella was detectable at 10 bacterial cells ml-1, while at the same time microbiological culture and isolation of the fastidious bacteria commonly failed. Moreover, we were able to retrieve the genotype of a Brucella isolate from a metagenomic dataset, indicating the potential of metagenomics for outbreak investigations using SNPs and core-genome multilocus sequence typing (cgMLST). To improve diagnostic applications, we developed a new bioinformatics approach for strain prediction based on SNPs to identify the correct species and define a certain strain with only low numbers of genus-specific reads per sample. This pipeline turned out to be more sensitive and specific than Mash Screen. In raw milk samples, we simultaneously detected numerous other zoonotic pathogens, antimicrobial resistance genes and virulence factors. Our study showed that metagenomics is a highly sensitive tool for biological risk assessment of foodstuffs, particularly when pathogen isolation is hazardous or challenging.


Asunto(s)
Brucella/genética , Brucella/metabolismo , Metagenómica/métodos , Leche/microbiología , Animales , Bacterias , Brucella/aislamiento & purificación , Brotes de Enfermedades , Farmacorresistencia Bacteriana/genética , Egipto , Microbiología de Alimentos , Inocuidad de los Alimentos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metagenoma , Polimorfismo de Nucleótido Simple
13.
One Health Outlook ; 2: 3, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33829127

RESUMEN

Whole genome sequencing (WGS) of foodborne pathogens has become an effective method for investigating the information contained in the genome sequence of bacterial pathogens. In addition, its highly discriminative power enables the comparison of genetic relatedness between bacteria even on a sub-species level. For this reason, WGS is being implemented worldwide and across sectors (human, veterinary, food, and environment) for the investigation of disease outbreaks, source attribution, and improved risk characterization models. In order to extract relevant information from the large quantity and complex data produced by WGS, a host of bioinformatics tools has been developed, allowing users to analyze and interpret sequencing data, starting from simple gene-searches to complex phylogenetic studies. Depending on the research question, the complexity of the dataset and their bioinformatics skill set, users can choose between a great variety of tools for the analysis of WGS data. In this review, we describe the relevant approaches for phylogenomic studies for outbreak studies and give an overview of selected tools for the characterization of foodborne pathogens based on WGS data. Despite the efforts of the last years, harmonization and standardization of typing tools are still urgently needed to allow for an easy comparison of data between laboratories, moving towards a one health worldwide surveillance system for foodborne pathogens.

14.
Infect Genet Evol ; 81: 104275, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32147474

RESUMEN

Rotavirus A (RVA) is a major cause of gastroenteritis in humans and mammalian animals, and has also been abundantly detected in avian species. Avian RVA infection is associated with diarrhea, reduced growth and increased mortality, leading to economic losses in the poultry industry. Avian RVA forms a unique genetic clade within the whole RVA species. However, up to now, only a few full-length avian RVA genomes have been published and only a small number of avian RVA strains have been adapted to grow in cell culture for subsequent studies. Here, the four cell culture-adapted chicken RVA strains 02V0002G3, 04V0027G6, 05V0500F6 and 06V0661G1 were characterized in more detail. Transmission electron microscopy of the viruses derived from culture supernatant showed a typical triple-layered morphology of rotavirus particles; in addition, strain 06V0661G1 showed a high proportion of double-layered particles. The (nearly) complete genome sequences of the viruses were determined using next-generation sequencing (NGS). The resulting sequences were compared to full-length or partial sequences of the strains previously determined using Sanger sequencing; and a few nucleotide mismatches, some of them resulting in amino acid substitutions, were identified. The genomes of strains 02V0002G3, 04V0027G6 and 05V0500F6 were closely related to each other showing a G19-P[30]-I11-R6-C6-M7-A16-N6-T8-E10-H8 genotype constellation. Strain 06V0661G1 carries the VP4 genotype P[31] in the same genetic backbone like the other strains. However, further sequence analysis showed that the genes of this strain, especially that encoding NSP3, clustered more separately from the other strains in phylogenetic trees. The characterized cell culture-adapted chicken RVA strains may be useful for future studies investigating genetic diversity and replication of avian rotaviruses, as well as for the development of vaccines and diagnostic tools.


Asunto(s)
Pollos/virología , Genoma Viral/genética , Infecciones por Rotavirus/virología , Rotavirus/genética , Animales , Células Cultivadas , Chlorocebus aethiops , Diarrea/virología , Gastroenteritis/virología , Genotipo , Humanos , Mamíferos/virología , Filogenia , Análisis de Secuencia/métodos , Secuenciación Completa del Genoma/métodos
15.
Sci Rep ; 10(1): 19246, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159111

RESUMEN

Brucellosis is one of the most common bacterial zoonoses worldwide affecting not only livestock and wildlife but also pets. Canine brucellosis is characterized by reproductive failure in dogs. Human Brucella canis infections are rarely reported but probably underestimated due to insufficient diagnostic surveillance. To improve diagnostics, we investigated dogs in a breeding kennel that showed clinical manifestations of brucellosis and revealed positive blood cultures. As an alternative to the time-consuming and hazardous classical identification procedures, a newly developed species-specific intact-cell matrix-assisted laser desorption/ionization-time of flight mass spectrometry analysis was applied, which allowed for rapid identification of B. canis and differentiation from closely related B. suis biovar 1. High-throughput sequencing and comparative genomics using single nucleotide polymorphism analysis clustered our isolates together with canine and human strains from various Central and South American countries in a distinct sub-lineage. Hence, molecular epidemiology clearly defined the outbreak cluster and demonstrated the endemic situation in South America. Our study illustrates that MALDI-TOF MS analysis using a validated in-house reference database facilitates rapid B. canis identification at species level. Additional whole genome sequencing provides more detailed outbreak information and leads to a deeper understanding of the epidemiology of canine brucellosis.


Asunto(s)
Brucella canis , Brucelosis , Brotes de Enfermedades , Enfermedades de los Perros , Genoma Bacteriano , Polimorfismo de Nucleótido Simple , Animales , Brucella canis/genética , Brucella canis/metabolismo , Brucelosis/sangre , Brucelosis/epidemiología , Brucelosis/genética , Brucelosis/veterinaria , Enfermedades de los Perros/sangre , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/genética , Perros , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , América del Sur/epidemiología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
16.
Microorganisms ; 8(12)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255715

RESUMEN

An inter-laboratory proficiency test was organized to assess the ability of participants to perform shotgun metagenomic sequencing of cold smoked salmon, experimentally spiked with a mock community composed of six bacteria, one parasite, one yeast, one DNA, and two RNA viruses. Each participant applied its in-house wet-lab workflow(s) to obtain the metagenomic dataset(s), which were then collected and analyzed using MG-RAST. A total of 27 datasets were analyzed. Sample pre-processing, DNA extraction protocol, library preparation kit, and sequencing platform, influenced the abundance of specific microorganisms of the mock community. Our results highlight that despite differences in wet-lab protocols, the reads corresponding to the mock community members spiked in the cold smoked salmon, were both detected and quantified in terms of relative abundance, in the metagenomic datasets, proving the suitability of shotgun metagenomic sequencing as a genomic tool to detect microorganisms belonging to different domains in the same food matrix. The implementation of standardized wet-lab protocols would highly facilitate the comparability of shotgun metagenomic sequencing dataset across laboratories and sectors. Moreover, there is a need for clearly defining a sequencing reads threshold, to consider pathogens as detected or undetected in a food sample.

17.
Front Microbiol ; 11: 575377, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33250869

RESUMEN

Metagenomics-based high-throughput sequencing (HTS) enables comprehensive detection of all species comprised in a sample with a single assay and is becoming a standard method for outbreak investigation. However, unlike real-time PCR or serological assays, HTS datasets generated for pathogen detection do not easily provide yes/no answers. Rather, results of the taxonomic read assignment need to be assessed by trained personnel to gain information thereof. Proficiency tests are important instruments of validation, harmonization, and standardization. Within the European Union funded project COMPARE [COllaborative Management Platform for detection and Analyses of (Re-) emerging and foodborne outbreaks in Europe], we conducted a proficiency test to scrutinize the ability to assess diagnostic metagenomics data. An artificial dataset resembling shotgun sequencing of RNA from a sample of contaminated trout was provided to 12 participants with the request to provide a table with per-read taxonomic assignments at species level and a report with a summary and assessment of their findings, considering different categories like pathogen, background, or contaminations. Analysis of the read assignment tables showed that the software used reliably classified the reads taxonomically overall. However, usage of incomplete reference databases or inappropriate data pre-processing caused difficulties. From the combination of the participants' reports with their read assignments, we conclude that, although most species were detected, a number of important taxa were not or not correctly categorized. This implies that knowledge of and awareness for potentially dangerous species and contaminations need to be improved, hence, capacity building for the interpretation of diagnostic metagenomics datasets is necessary.

18.
Front Microbiol ; 10: 1805, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31447815

RESUMEN

In food safety the detection of food contaminations with pathogenic microorganisms is a race against time and often outpaced by error-prone epidemiological approaches. For evidence-based outbreak investigations fast and reliable techniques and procedures are required to identify the source of infection. Metagenomics has the potential to become a powerful tool in the field of modern food safety, since it allows the detection, identification and characterization of a broad range of pathogens in a single experiment without pre-cultivation within a couple of days. Nevertheless, sample handling, sequencing and data analysis are challenging and can introduce errors and biases into the analysis. In order to evaluate the potential of metagenomics in food safety, we generated a mock community containing DNA of foodborne bacteria. Herewith, we compare the aptitude of the two prevalent approaches - 16S rDNA amplicon sequencing and whole genome shotgun sequencing - for the detection of foodborne bacteria using different parameters during sample preparation, sequencing and data analysis. 16S rDNA sequencing did not only result in high deviations from the expected sample composition on genus and species level, but more importantly lacked the detection of several pathogenic species. While shotgun sequencing is more suitable for species detection, abundance estimation, genome assembly and species characterization, the performance can vary depending on the library preparation kit, which was confirmed for a naturally Francisella tularensis contaminated game meat sample. The application of the Nextera XT DNA Library Preparation Kit for shotgun sequencing did not only result in lower reference genome recovery and coverage, but also in distortions of the mock community composition. For data analysis, we propose a publicly available workflow for pathogen detection and characterization and demonstrate its benefits on the usability of metagenomic sequencing in food safety by analyzing an authentic metagenomic sample.

19.
Genome Announc ; 5(43)2017 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-29074652

RESUMEN

We describe here the genome sequence of the novel temperate Klebsiella pneumoniae phage KPP5665-2 isolated from a Klebsiella pneumoniae strain recovered from milk in Germany in 2016. The phage exhibited a narrow host range and a siphoviridal morphology. KPP5665-2-related prophage sequences were detected in whole-genome sequencing (WGS) data of various Klebsiella species isolates.

20.
Sci Rep ; 5: 12532, 2015 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26219962

RESUMEN

The erythrocyte is an extraordinary host cell for intracellular pathogens and requires extensive remodelling to become permissive for infection. Malaria parasites modify their host red blood cells through protein export to acquire nutrients and evade immune responses. Endogenous fluorescent tagging of three signature proteins of the Plasmodium berghei translocon of exported proteins (PTEX), heat shock protein 101, exported protein 2 (EXP2), and PTEX88, revealed motile, tubular extensions of the parasitophorous vacuole that protrude from the parasite far into the red blood cell. EXP2 displays a more prominent presence at the periphery of the parasite, consistent with its proposed role in pore formation. The tubular compartment is most prominent during trophozoite growth. Distinct spatiotemporal expression of individual PTEX components during sporogony and liver-stage development indicates additional functions and tight regulation of the PTEX translocon during parasite life cycle progression. Together, live cell imaging and correlative light and electron microscopy permitted previously unrecognized spatiotemporal and subcellular resolution of PTEX-containing tubules in murine malaria parasites. These findings further refine current models for Plasmodium-induced erythrocyte makeover.


Asunto(s)
Plasmodium berghei/metabolismo , Proteínas Protozoarias/metabolismo , Eritrocitos/metabolismo , Eritrocitos/parasitología , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Estadios del Ciclo de Vida , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Transporte de Proteínas , Vacuolas/metabolismo , Vacuolas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA