Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Rev ; 123(12): 7548-7584, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37219995

RESUMEN

Thin-film organic, colloidal quantum dot, and metal halide perovskite semiconductors are all being pursued in the quest for a wavelength-tunable diode laser technology that does not require epitaxial growth on a traditional semiconductor substrate. Despite promising demonstrations of efficient light-emitting diodes and low-threshold optically pumped lasing in each case, there are still fundamental and practical barriers that must be overcome to reliably achieve injection lasing. This review outlines the historical development and recent advances of each material system on the path to a diode laser. Common challenges in resonator design, electrical injection, and heat dissipation are highlighted, as well as the different optical gain physics that make each system unique. The evidence to date suggests that continued progress for organic and colloidal quantum dot laser diodes will likely hinge on the development of new materials or indirect pumping schemes, while improvements in device architecture and film processing are most critical for perovskite lasers. In all cases, systematic progress will require methods that can quantify how close new devices get with respect to their electrical lasing thresholds. We conclude by discussing the current status of nonepitaxial laser diodes in the historical context of their epitaxial counterparts, which suggests that there is reason to be optimistic for the future.

2.
Opt Express ; 29(14): 22614-22622, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34266020

RESUMEN

We show that operating magneto-optic coupled ring isolators near an exceptional point (EP) fundamentally improves their tradeoff between isolation bandwidth and insertion loss. In analogy to EP sensors, operating a coupled ring isolator at an EP causes its isolation bandwidth to depend on the square root of the nonreciprocal phase shift (NRPS) instead of the usual linear dependence, thereby enhancing the bandwidth when the NRPS is small. In cases of practical interest, this behavior enables more than a 50% increase in 20 dB isolation bandwidth at 3 dB insertion loss for a given pair of rings. The advantage of EP operation grows in the vicinity of magneto-optic material resonances and should extend to other types of on-chip isolators that rely on similarly weak nonreciprocal perturbations.

3.
Nano Lett ; 20(5): 3306-3312, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32227973

RESUMEN

Metalattices are artificial 3D solids, periodic on sub-100 nm length scales, that enable the functional properties of materials to be tuned. However, because of their complex structure, predicting and characterizing their properties is challenging. Here we demonstrate the first nondestructive measurements of the mechanical and structural properties of metalattices with feature sizes down to 14 nm. By monitoring the time-dependent diffraction of short wavelength light from laser-excited acoustic waves in the metalattices, we extract their acoustic dispersion, Young's modulus, filling fraction, and thicknesses. Our measurements are in excellent agreement with macroscopic predictions and potentially destructive techniques such as nanoindentation and scanning electron microscopy, with increased accuracy over larger areas. This is interesting because the transport properties of these metalattices do not obey bulk predictions. Finally, this approach is the only way to validate the filling fraction of metalattices over macroscopic areas. These combined capabilities can enable accurate synthesis of nanoenhanced materials.

4.
Phys Rev Lett ; 124(17): 177401, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32412265

RESUMEN

We investigate the potential for cavity-modified electron transfer in a doped organic semiconductor through the photocurrent that arises from exciting charged molecules (polarons). When the polaron optical transition is strongly coupled to a Fabry-Perot microcavity mode, we observe polaron polaritons in the photoconductivity action spectrum and find that their magnitude depends differently on applied electric field than photocurrent originating from the excitation of uncoupled polarons in the same cavity. Crucially, moving from positive to negative detuning causes the upper and lower polariton photocurrents to swap their field dependence, with the more polaronlike branch resembling that of an uncoupled excitation. These observations are understood on the basis of a phenomenological model in which strong coupling alters the Onsager dissociation of polarons from their dopant counterions by effectively increasing the thermalization length of the photoexcited charge carrier.

5.
Opt Express ; 27(20): A1467-A1480, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31684499

RESUMEN

Optical concentration can improve the efficiency and reduce the cost of photovoltaic power but has traditionally been too bulky, massive, and unreliable for use in space. Here, we explore a new ultra-compact and low-mass microcell concentrating photovoltaic (µCPV) paradigm for space based on the monolithic integration of transfer-printed microscale solar cells and molded microconcentrator optics. We derive basic bounds on the compactness as a function of geometric concentration ratio and angular acceptance, and show that a simple reflective parabolic concentrator provides the best combination of specific power, angular acceptance, and overall fabrication simplicity. This architecture is simulated in detail and validated experimentally with a µCPV prototype that is less than 1.7 mm thick and operates with six, 650 µm square triple-junction microcells at a geometric concentration ratio of 18.4×. In outdoor testing, the system achieves a terrestrial power conversion efficiency of 25.8 ± 0.2% over a ±9.5° angular range, resulting in a specific power of approximately 111 W/kg. These results lay the groundwork for future space µCPV systems and establish a realistic path to exceed 350 W/kg specific power at >33% power conversion efficiency by scaling down to even smaller microcells.

6.
Nano Lett ; 16(7): 4624-9, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27331618

RESUMEN

Organic-inorganic lead halide perovskite semiconductors have recently reignited the prospect of a tunable, solution-processed diode laser, which has the potential to impact a wide range of optoelectronic applications. Here, we demonstrate a metal-clad, second-order distributed feedback methylammonium lead iodide perovskite laser that marks a significant step toward this goal. Optically pumping this device with an InGaN diode laser at low temperature, we achieve lasing above a threshold pump intensity of 5 kW/cm(2) for durations up to ∼25 ns at repetition rates exceeding 2 MHz. We show that the lasing duration is not limited by thermal runaway and propose instead that lasing ceases under continuous pumping due to a photoinduced structural change in the perovskite that reduces the gain on a submicrosecond time scale. Our results indicate that the architecture demonstrated here could provide the foundation for electrically pumped lasing with a threshold current density Jth < 5 kA/cm(2) under sub-20 ns pulsed drive.

7.
Opt Express ; 24(26): A1635-A1646, 2016 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-28059359

RESUMEN

Planar microtracking provides an alternate paradigm for solar concentration that offers the possibility of realizing high-efficiency embedded concentrating photovoltaic systems in the form factor of standard photovoltaic panels. Here, we investigate the thermodynamic limit of planar tracking optical concentrators and establish that they can, in principal, achieve the sine limit of their orientationally-tracked counterparts provided that the receiver translates a minimum distance set by the field of view half-angle. We develop a phase space methodology to optimize practical planar tracking concentrators and apply it to the design of a two surface, catadioptric system that operates with > 90% optical efficiency over a 140° field of view at geometric gains exceeding 1000×. These results provide a reference point for subsequent developments in the field and indicate that planar microtracking can achieve the high optical concentration ratio required in commercial concentrating photovoltaic systems.

8.
ACS Appl Mater Interfaces ; 14(36): 41316-41327, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36054507

RESUMEN

Semiconductor metalattices consisting of a linked network of three-dimensional nanostructures with periodicities on a length scale <100 nm can enable tailored functional properties due to their complex nanostructuring. For example, by controlling both the porosity and pore size, thermal transport in these phononic metalattices can be tuned, making them promising candidates for efficient thermoelectrics or thermal rectifiers. Thus, the ability to characterize the porosity, and other physical properties, of metalattices is critical but challenging, due to their nanoscale structure and thickness. To date, only metalattices with high porosities, close to the close-packing fraction of hard spheres, have been studied experimentally. Here, we characterize the porosity, thickness, and elastic properties of a low-porosity, empty-pore silicon metalattice film (∼500 nm thickness) with periodic spherical pores (∼tens of nanometers), for the first time. We use laser-driven nanoscale surface acoustic waves probed by extreme ultraviolet scatterometry to nondestructively measure the acoustic dispersion in these thin silicon metalattice layers. By comparing the data to finite element models of the metalattice sample, we can extract Young's modulus and porosity. Moreover, by controlling the acoustic wave penetration depth, we can also determine the metalattice layer thickness and verify the substrate properties. Additionally, we utilize electron tomography images of the metalattice to verify the geometry and validate the porosity extracted from scatterometry. These advanced characterization techniques are critical for informed and iterative fabrication of energy-efficient devices based on nanostructured metamaterials.

9.
ACS Nano ; 14(10): 12810-12818, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32941002

RESUMEN

Metalattices are crystalline arrays of uniform particles in which the period of the crystal is close to some characteristic physical length scale of the material. Here, we explore the synthesis and properties of a germanium metalattice in which the ∼70 nm periodicity of a silica colloidal crystal template is close to the ∼24 nm Bohr exciton radius of the nanocrystalline Ge replica. The problem of Ge surface oxidation can be significant when exploring quantum confinement effects or designing electronically coupled nanostructures because of the high surface area to volume ratio at the nanoscale. To eliminate surface oxidation, we developed a core-shell synthesis in which the Ge metalattice is protected by an oxide-free Si interfacial layer, and we explore its properties by transmission electron microscopy (TEM), Raman spectroscopy, and electron energy loss spectroscopy (EELS). The interstices of a colloidal crystal film grown from 69 nm diameter spherical silica particles were filled with polycrystalline Ge by high-pressure confined chemical vapor deposition (HPcCVD) from GeH4. After the SiO2 template was etched away with aqueous HF, the Ge replica was uniformly coated with an amorphous Si shell by HPcCVD as confirmed by TEM-EDS (energy-dispersive X-ray spectroscopy) and Raman spectroscopy. Formation of the shell prevents oxidation of the Ge core within the detection limit of XPS. The electronic properties of the core-shell structure were studied by accessing the Ge 3d edge onset using STEM-EELS. A blue shift in the edge onset with decreasing size of Ge sites in the metalattices suggests quantum confinement of the Ge core. The degree of quantum confinement of the Ge core depends on the void sizes in the template, which is tunable by using silica particles of varying size. The edge onset also shows a shift to higher energy near the shell in comparison with the Ge core. This shift along with the observation of Ge-Si vibrational modes in the Raman spectrum indicate interdiffusion of Ge and Si. Both the size of the voids in the template and core-shell interdiffusion of Si and Ge can in principle be tuned to modify the electronic properties of the Ge metalattice.

10.
Nat Commun ; 9(1): 4893, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30459326

RESUMEN

Hybrid perovskite semiconductors represent a promising platform for color-tunable light emitting diodes (LEDs) and lasers; however, the behavior of these materials under the intense electrical excitation required for electrically-pumped lasing remains unexplored. Here, we investigate methylammonium lead iodide-based perovskite LEDs under short pulsed drive at current densities up to 620 A cm-2. At low current density (J < 10 A cm-2), we find that the external quantum efficiency (EQE) depends strongly on the time-averaged history of the pulse train and show that this curiosity is associated with slow ion movement that changes the internal field distribution and trap density in the device. The impact of ions is less pronounced in the high current density regime (J > 10 A cm-2), where EQE roll-off is dominated by a combination of Joule heating and charge imbalance yet shows no evidence of Auger loss, suggesting that operation at kA cm-2 current densities relevant for a laser diode should be within reach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA