Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Theor Appl Genet ; 126(11): 2671-82, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23921956

RESUMEN

Maize was first domesticated in a restricted valley in south-central Mexico. It was diffused throughout the Americas over thousands of years, and following the discovery of the New World by Columbus, was introduced into Europe. Trade and colonization introduced it further into all parts of the world to which it could adapt. Repeated introductions, local selection and adaptation, a highly diverse gene pool and outcrossing nature, and global trade in maize led to difficulty understanding exactly where the diversity of many of the local maize landraces originated. This is particularly true in Africa and Asia, where historical accounts are scarce or contradictory. Knowledge of post-domestication movements of maize around the world would assist in germplasm conservation and plant breeding efforts. To this end, we used SSR markers to genotype multiple individuals from hundreds of representative landraces from around the world. Applying a multidisciplinary approach combining genetic, linguistic, and historical data, we reconstructed possible patterns of maize diffusion throughout the world from American "contribution" centers, which we propose reflect the origins of maize worldwide. These results shed new light on introductions of maize into Africa and Asia. By providing a first globally comprehensive genetic characterization of landraces using markers appropriate to this evolutionary time frame, we explore the post-domestication evolutionary history of maize and highlight original diversity sources that may be tapped for plant improvement in different regions of the world.


Asunto(s)
Internacionalidad , Zea mays/genética , Américas , Análisis por Conglomerados , Sitios Genéticos , Variación Genética , Geografía , Repeticiones de Microsatélite/genética , Filogenia , Análisis de Componente Principal
2.
Plant Genome ; 10(1)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28464061

RESUMEN

More than 80% of the 19 million ha of maize ( L.) in tropical Asia is rainfed and prone to drought. The breeding methods for improving drought tolerance (DT), including genomic selection (GS), are geared to increase the frequency of favorable alleles. Two biparental populations (CIMMYT-Asia Population 1 [CAP1] and CAP2) were generated by crossing elite Asian-adapted yellow inbreds (CML470 and VL1012767) with an African white drought-tolerant line, CML444. Marker effects of polymorphic single-nucleotide polymorphisms (SNPs) were determined from testcross (TC) performance of F families under drought and optimal conditions. Cycle 1 (C1) was formed by recombining the top 10% of the F families based on TC data. Subsequently, (i) C2[PerSe_PS] was derived by recombining those C1 plants that exhibited superior per se phenotypes (phenotype-only selection), and (ii) C2[TC-GS] was derived by recombining a second set of C1 plants with high genomic estimated breeding values (GEBVs) derived from TC phenotypes of F families (marker-only selection). All the generations and their top crosses to testers were evaluated under drought and optimal conditions. Per se grain yields (GYs) of C2[PerSe_PS] and that of C2[TC-GS] were 23 to 39 and 31 to 53% better, respectively, than that of the corresponding F population. The C2[TC-GS] populations showed superiority of 10 to 20% over C2[PerSe-PS] of respective populations. Top crosses of C2[TC-GS] showed 4 to 43% superiority of GY over that of C2[PerSe_PS] of respective populations. Thus, GEBV-enabled selection of superior phenotypes (without the target stress) resulted in rapid genetic gains for DT.


Asunto(s)
Aclimatación/genética , Fitomejoramiento , Zea mays/genética , Sequías , Grano Comestible/genética , Grano Comestible/fisiología , Selección Genética , Zea mays/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA