Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1735(2): 101-10, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15982924

RESUMEN

Reactive oxygen species play an important role in several acute lung injuries. The lung tissue contains polyunsaturated fatty acids (PUFAs) that are substrates of lipid peroxidation that may lead to loss of the functional integrity of the cell membranes. In this study, we compare the in vitro protective effect of pulmonary surfactant protein A (SP-A), purified from porcine surfactant, against ascorbate-Fe(2+) lipid peroxidation stimulated by linoleic acid hydroperoxide (LHP) of the mitochondria and microsomes isolated from rat lung; deprived organelles of ascorbate and LHP were utilized as control. The process was measured simultaneously by chemiluminescence as well as by PUFA degradation of the total lipids isolated from these organelles. The addition of LHP to rat lung mitochondria or microsomes produces a marked increase in light emission; the highest value of activation was produced in microsomes (total chemiluminescence: 20.015+/-1.735 x 10(5) cpm). The inhibition of lipid peroxidation (decrease of chemiluminescence) was observed with the addition of increasing amounts (2.5 to 5.0 microg) of SP-A in rat lung mitochondria and 2.5 to 7.5 microg of SP-A in rat lung microsomes. The inhibitory effect reaches the highest values in the mitochondria, thus, 5.0 microg of SP-A produces a 100% inhibition in this membranes whereas 7.5 microg of SP-A produces a 51.25+/-3.48% inhibition in microsomes. The major difference in the fatty acid composition of total lipids isolated from native and peroxidized membranes was found in the arachidonic acid content; this decreased from 9.68+/-1.60% in the native group to 5.72+/-1.64% in peroxidized mitochondria and from 7.39+/-1.14% to 3.21+/-0.77% in microsomes. These changes were less pronounced in SP-A treated membranes; as an example, in the presence of 5.0 microg of SP-A, we observed a total protection of 20:4 n-6 (9.41+/-3.29%) in mitochondria, whereas 7.5 microg of SP-A produced a 65% protection in microsomes (5.95+/-0.73%). Under these experimental conditions, SP-A produces a smaller inhibitory effect in microsomes than in mitochondria. Additional studies of lipid peroxidation of rat lung mitochondria or microsomes using equal amounts of albumin and even higher compared to SPA were carried out. Our results indicate that under our experimental conditions, BSA was unable to inhibit lipid peroxidation stimulated by linoleic acid hydroperoxide of rat lung mitochondria or microsomes, thus indicating that this effect is specific to SP-A.


Asunto(s)
Ácidos Linoleicos/metabolismo , Peroxidación de Lípido/fisiología , Peróxidos Lipídicos/metabolismo , Pulmón/metabolismo , Estrés Oxidativo/fisiología , Proteína A Asociada a Surfactante Pulmonar/fisiología , Animales , Ácidos Grasos Insaturados/metabolismo , Depuradores de Radicales Libres/farmacología , Peroxidación de Lípido/efectos de los fármacos , Pulmón/efectos de los fármacos , Masculino , Microsomas/efectos de los fármacos , Microsomas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteína A Asociada a Surfactante Pulmonar/farmacología , Ratas , Ratas Wistar
2.
Biochim Biophys Acta ; 1581(3): 65-74, 2002 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-12020634

RESUMEN

In the present study we have investigated the effect of partially purified retinal fatty acid binding protein (FABP) against nonenzymatic lipid peroxidation stimulated by hydroperoxides derived from fatty acids on rod outer segment (ROS) membranes. Linoleic acid hydroperoxide (LHP), arachidonic acid hydroperoxide (AHP) and docosahexaenoic acid hydroperoxide (DHP) were prepared from linoleic acid, arachidonic acid and docosahexaenoic acid, respectively, by means of lipoxidase. ROS membranes were peroxidized using an ascorbate-Fe(+2) experimental system. The effect on the peroxidation of ROS containing different amounts of lipid hydroperoxides (LOOH) was studied; ROS deprived of exogenously added LOOH was utilized as control. The degradative process was measured simultaneously by determining chemiluminescence and fatty acid composition of total lipids isolated from ROS. The addition of hydroperoxides to ROS produced a marked increase in light emission. This increase was hydroperoxide concentration-dependent. The highest value of activation was produced by DHP. The decrease percentage of the more polyunsaturated fatty acids (PUFAs) (20:4 n6 and 22:6 n3) was used to evaluate the fatty acid alterations observed during the process. We have compared the fatty acid composition of total lipids isolated from native ROS and peroxidized ROS that were incubated with and without hydroperoxides. The major difference in the fatty acid composition was found in the docosahexaenoic acid content, which decreased by 45.51+/-1.07% in the peroxidized group compared to native ROS; the decrease was even higher, 81.38+/-1.11%, when the lipid peroxidation was stimulated by DHP. Retinal FABP was partially purified from retinal cytosol. Afterwards, we measured its effect on the reaction of lipid peroxidation induced by LOOH. As a result, we observed a decrease of chemiluminescence (inhibition of lipid peroxidation) when adding increasing amounts (0.2 to 0.6 mg) of retinal FABP to ROS. The inhibitory effect reaches its highest value in the presence of DHP (41.81+/-10.18%). Under these conditions, bovine serum albumin (BSA) produces a smaller inhibitory effect (20.2+/-7.06%) than FABP.


Asunto(s)
Proteínas Portadoras/metabolismo , Peroxidación de Lípido , Peróxidos Lipídicos/farmacología , Proteínas de Neoplasias , Retina/metabolismo , Segmento Externo de la Célula en Bastón/metabolismo , Animales , Bovinos , Ácidos Docosahexaenoicos/farmacología , Electroforesis en Gel de Poliacrilamida , Proteínas de Unión a Ácidos Grasos , Ácidos Grasos Insaturados/metabolismo , Leucotrienos/farmacología , Ácidos Linoleicos/farmacología , Mediciones Luminiscentes , Retina/efectos de los fármacos , Segmento Externo de la Célula en Bastón/efectos de los fármacos , Albúmina Sérica Bovina/metabolismo
3.
Int J Biochem Cell Biol ; 35(7): 1071-84, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12672478

RESUMEN

This study analyzes the effect of cellular retinol-binding protein (CRBP), partially purified from retinal pigment epithelium (RPE) cytosol, on the non-enzymatic lipid peroxidation induced by fatty acid hydroperoxides of mitochondrial membranes isolated from bovine RPE. The effect of different amounts (50, 75 and 100 nmol) of linoleic acid hydroperoxide (LHP), arachidonic acid hydroperoxide (AHP) and docosahexaenoic acid hydroperoxide (DHP) on the lipid peroxidation of RPE mitochondria was studied; RPE mitochondria deprived of exogenously added hydroperoxide was utilized as control. The process was measured simultaneously by determining chemiluminescence as well as polyunsaturated fatty acid (PUFA) degradation of total lipids isolated from RPE mitochondria. The addition of hydroperoxides to RPE mitochondria produces a marked increase in light emission that was hydroperoxide concentration dependent. The highest value of activation was produced by LHP. The major difference in the fatty acid composition of total lipids isolated from native and peroxidized RPE mitochondria incubated with and without hydroperoxides was found in the docosahexaenoic acid content, this decreased 40.90+/-3.01% in the peroxidized group compared to native RPE mitochondria. The decrease was significantly high: 86.32+/-2.57% when the lipid peroxidation was stimulated by 100 nmol of LHP. Inhibition of lipid peroxidation (decrease of chemiluminescence) was observed with the addition of increasing amounts (100-600 microg) of CRBP to RPE mitochondria. The inhibitory effect reaches the highest values in the presence of LHP.


Asunto(s)
Peróxidos Lipídicos/farmacología , Mitocondrias/metabolismo , Epitelio Pigmentado Ocular/metabolismo , Proteínas de Unión al Retinol/metabolismo , Animales , Bovinos , Peroxidación de Lípido/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Epitelio Pigmentado Ocular/efectos de los fármacos , Proteínas Celulares de Unión al Retinol
4.
Vet J ; 182(3): 463-8, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18829353

RESUMEN

Oxidative stress is a possible risk factor for eye diseases. Lipid peroxidation is one of the major events induced by oxidative stress and is particularly active in polyunsaturated fatty acid (PUFA)-rich biomembranes. This work evaluated endogenous lipid antioxidants, in vitro non-enzymatic lipid peroxidation of rod outer segment membranes (ROS), the fatty acid composition during oxidative damage of total lipids from equine retina and ROS, and the protective action of alpha-tocopherol (alpha-Toc). The major lipid soluble antioxidant was alpha-Toc followed by retinoids and carotenoids. The retina contained a high percentage of PUFAs, mainly docosahexaenoic acid (22:6n-3) and arachidonic acid (20:4n-6). Lipid peroxidation of the equine ROS, induced by Fe(2+)-ascorbate, was monitored using chemiluminescence (CL) with or without pre-treatment with alpha-Toc. With alpha-Toc pre-treatment, CL values were significantly decreased. The most abundant fatty acid was 22:6n-3. After 3h incubation, 95% of total PUFAs were destroyed by peroxidation, whereas in alpha-Toc pre-treated ROS the percentage was significantly decreased. The results show that the retina has an endogenous lipid soluble antioxidant system. ROS were highly sensitive to oxidative damage, since their fatty acid composition was markedly modified during the lipid peroxidation process. The protective role of alpha-Toc as an antioxidant was evident and it could be used in the treatment of equine ocular diseases in which free radicals are involved.


Asunto(s)
Antioxidantes/farmacología , Caballos , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Segmento Externo de la Célula en Bastón/efectos de los fármacos , alfa-Tocoferol/farmacología , Animales , Ácidos Grasos Insaturados/metabolismo , Depuradores de Radicales Libres , Caballos/metabolismo , Mediciones Luminiscentes , Segmento Externo de la Célula en Bastón/metabolismo
5.
J Pineal Res ; 41(3): 201-10, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16948780

RESUMEN

The rod outer segment (ROSg) membranes are essentially lipoprotein complexes. Rhodopsin, the major integral protein of ROSg, is surrounded by phospholipids highly enriched in docosahexaenoic acid (22:6 n3). This fluid environment plays an important role for conformational changes after photo-activation. Thus, ROSg membranes are highly susceptible to oxidative damage. Melatonin synthesized in the pineal gland, retina and other tissues is a free radical scavenger. The principal aim of this work was to study the changes in the ROSg membranes isolated from bovine retina submitted to nonenzymatic lipid peroxidation (ascorbate-Fe2+ induced), during different time intervals (0-180 min). Oxidative stress was monitored by increase in the chemiluminescence and fatty acid alterations. In addition we studied the in vitro protective effect of 5 mm melatonin. The total cpm originated from light emission (chemiluminescence) was found to be lower in those membranes incubated in the presence of melatonin. The docosahexaenoic acid content decreased considerably when the membranes were exposed to oxidative damage. This reduction was from 35.5 +/- 2.9% in the native membranes to 12.65 +/- 1.86% in those peroxidized during 180 min. In the presence of 5 mm melatonin we observed a content preservation of 22:6 n3 (23.85 +/- 2.77%) at the same time of peroxidation. Simultaneously the alterations of membrane proteins under oxidative stress were studied using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Loss of protein sulfhydryl groups and increased incorporation of carbonyl groups were utilized as biomarkers of protein oxidation. In membranes exposed to Fe2+ -ascorbate, we observed a decrease of protein thiols from 50.9 +/- 3.38 in native membranes to 1.72 +/- 2.81 nmol/mg of protein after 180 min of lipid peroxidation associated with increased incorporation of carbonyl groups into proteins from 7.20 +/- 2.50 to 12.50 +/- 1.12 nmol/mg of protein. In the SDS-PAGE we observed a decrease in the content of all the proteins, mainly rhodopsin, as a consequence of peroxidation. Melatonin, prevent both lipid peroxidation and protein oxidation.


Asunto(s)
Ácido Ascórbico/fisiología , Membrana Celular/metabolismo , Hierro/fisiología , Peroxidación de Lípido/fisiología , Melatonina/fisiología , Proteínas de la Membrana/metabolismo , Segmento Externo de la Célula en Bastón/metabolismo , Animales , Bovinos , Luminiscencia , Estrés Oxidativo/fisiología
6.
J Pineal Res ; 35(4): 276-82, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14521634

RESUMEN

Rod outer segment membranes (ROS) are highly vulnerable to autooxidation because of their high content of long chain polyunsaturated fatty acids (PUFAs). Melatonin and N-acetylserotonin are indoleamines synthesized in the pineal gland, retina and other tissues. These compounds are free radical scavengers and indirect antioxidants because of their stimulatory effect on antioxidative enzymes. We compared the in vitro protective effect of melatonin and N-acetylserotonin on the ascorbate-Fe2+ induced lipid peroxidation of PUFAs located in ROS membranes. This process was measured by chemiluminescence and fatty acid composition of total lipids of ROS. We assayed increasing concentrations of melatonin (0-10 mm) and N-acetylserotonin (0-2 mm). In both cases the total cpm originated from light emission (chemiluminescence) was found to be lower in those membranes incubated in the presence of either melatonin or N-acetylserotonin; this decreased proportional to the concentration of the indole. Thus, 10 mm melatonin and 2 mm N-acetylserotonin produced a reduction of 51 +/- 6 and 100% in the total chemiluminescene (lipid peroxidation), respectively. We also noticed a PUFAs protection: the docosahexaenoic acid content decreased considerably when the membranes were submitted to oxidative damage. This reduction was from 37.6 +/- 2.1% in the native membranes to 6.2 +/- 0.8% in those which were peroxidized. These changes were less pronounced in treated ROS membranes; as an example in the presence of 10 mm melatonin or 2 mm N-acetylserotonin we observed a content preservation of 22:6 n-3 (23.6 +/- 1.2 and 39.1 +/- 1.2% respectively). The concentration of each compound required to inhibit 50% of the lipid peroxidation (IC50) was 9.82 mm for melatonin and 0.43 mm for N-acetylserotonin, respectively. N-acetylserotonin shows a protective effect about 20 times higher than that of melatonin.


Asunto(s)
Depuradores de Radicales Libres/farmacología , Peroxidación de Lípido/efectos de los fármacos , Melatonina/farmacología , Segmento Externo de la Célula en Bastón/efectos de los fármacos , Serotonina/análogos & derivados , Serotonina/farmacología , Animales , Ácido Ascórbico/metabolismo , Bovinos , Hierro/metabolismo , Metabolismo de los Lípidos , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA