Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(40): e2221507120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37751555

RESUMEN

Antibiotics, by definition, reduce bacterial growth rates in optimal culture conditions; however, the real-world environments bacteria inhabit see rapid growth punctuated by periods of low nutrient availability. How antibiotics mediate population decline during these periods is poorly understood. Bacteria cannot optimize for all environmental conditions because a growth-longevity tradeoff predicts faster growth results in faster population decline, and since bacteriostatic antibiotics slow growth, they should also mediate longevity. We quantify how antibiotics, their targets, and resistance mechanisms influence longevity using populations of Escherichia coli and, as the tradeoff predicts, populations are maintained for longer if they encounter ribosome-binding antibiotics doxycycline and erythromycin, a finding that is not observed using antibiotics with alternative cellular targets. This tradeoff also predicts resistance mechanisms that increase growth rates during antibiotic treatment could be detrimental during nutrient stresses, and indeed, we find resistance by ribosomal protection removes benefits to longevity provided by doxycycline. We therefore liken ribosomal protection to a "Trojan horse" because it provides protection from an antibiotic but, during nutrient stresses, it promotes the demise of the bacteria. Seeking mechanisms to support these observations, we show doxycycline promotes efficient metabolism and reduces the concentration of reactive oxygen species. Seeking generality, we sought another mechanism that affects longevity and we found the number of doxycycline targets, namely, the ribosomal RNA operons, mediates growth and longevity even without antibiotics. We conclude that slow growth, as observed during antibiotic treatment, can help bacteria overcome later periods of nutrient stress.


Asunto(s)
Antibacterianos , Bacterias , Antibacterianos/farmacología , Doxiciclina/farmacología , Escherichia coli , Ribosomas , Humanos
2.
J Evol Biol ; 37(4): 371-382, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38386697

RESUMEN

Viruses that infect bacteria, known as bacteriophages or phages, are the most prevalent entities on Earth. Their genetic diversity in nature is well documented, and members of divergent lineages can be found sharing the same ecological niche. This viral diversity can be influenced by a number of factors, including productivity, spatial structuring of the environment, and host-range trade-offs. Rapid evolution is also known to promote diversity by buffering ecological systems from extinction. There is, however, little known about the impact of coevolution on the maintenance of viral diversity within a microbial community. To address this, we developed a 4 species experimental system where two bacterial hosts, a generalist and a specialist phage, coevolved in a spatially homogenous environment over time. We observed the persistence of both viruses if the resource availability was sufficiently high. This coexistence occurred in the absence of any detectable host-range trade-offs that are costly for generalists and thus known to promote viral diversity. However, the coexistence was lost if two bacteria were not permitted to evolve alongside the phages or if two phages coevolved with a single bacterial host. Our findings indicate that a host's resistance response in mixed-species communities plays a significant role in maintaining viral diversity in the environment.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Especificidad del Huésped , Bacterias/genética
3.
Ecol Lett ; 26(6): 896-907, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37056166

RESUMEN

A cornerstone of classical virulence evolution theories is the assumption that pathogen growth rate is positively correlated with virulence, the amount of damage pathogens inflict on their hosts. Such theories are key for incorporating evolutionary principles into sustainable disease management strategies. Yet, empirical evidence raises doubts over this central assumption underpinning classical theories, thus undermining their generality and predictive power. In this paper, we identify a key component missing from current theories which redefines the growth-virulence relationship in a way that is consistent with data. By modifying the activity of a single metabolic gene, we engineered strains of Magnaporthe oryzae with different nutrient acquisition and growth rates. We conducted in planta infection studies and uncovered an unexpected non-monotonic relationship between growth rate and virulence that is jointly shaped by how growth rate and metabolic efficiency interact. This novel mechanistic framework paves the way for a much-needed new suite of virulence evolution theories.


Asunto(s)
Evolución Biológica , Virulencia
4.
Am Nat ; 201(5): 659-679, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37130231

RESUMEN

AbstractHost-parasite coevolution is expected to drive the evolution of genetic diversity because the traits used in arms races-namely, host range and parasite resistance-are hypothesized to trade off with traits used in resource competition. We therefore tested data for several trade-offs among 93 isolates of bacteriophage λ and 51 Escherichia coli genotypes that coevolved during a laboratory experiment. Surprisingly, we found multiple trade-ups (positive trait correlations) but little evidence of several canonical trade-offs. For example, some bacterial genotypes evaded a trade-off between phage resistance and absolute fitness, instead evolving simultaneous improvements in both traits. This was surprising because our experimental design was predicted to expose resistance-fitness trade-offs by culturing E. coli in a medium where the phage receptor, LamB, is also used for nutrient acquisition. On reflection, LamB mediates not one but many trade-offs, allowing for more complex trait interactions than just pairwise trade-offs. Here, we report that mathematical reasoning and laboratory data highlight how trade-ups should exist whenever an evolutionary system exhibits multiple interacting trade-offs. Does this mean that coevolution should not promote genetic diversity? No, quite the contrary. We deduce that whenever positive trait correlations are observed in multidimensional traits, other traits may trade off and so provide the right circumstances for diversity maintenance. Overall, this study reveals that there are predictive limits when data account only for pairwise trait correlations, and it argues that a wider range of circumstances than previously anticipated can promote genetic and species diversity.


Asunto(s)
Bacteriófagos , Escherichia coli , Escherichia coli/genética , Mutación , Fenotipo , Especificidad del Huésped , Bacteriófagos/genética , Evolución Biológica
5.
Mol Biol Evol ; 38(9): 3847-3863, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-33693929

RESUMEN

To determine the dosage at which antibiotic resistance evolution is most rapid, we treated Escherichia coli in vitro, deploying the antibiotic erythromycin at dosages ranging from zero to high. Adaptation was fastest just below erythromycin's minimal inhibitory concentration (MIC) and genotype-phenotype correlations determined from whole genome sequencing revealed the molecular basis: simultaneous selection for copy number variation in three resistance mechanisms which exhibited an "inverted-U" pattern of dose-dependence, as did several insertion sequences and an integron. Many genes did not conform to this pattern, however, reflecting changes in selection as dose increased: putative media adaptation polymorphisms at zero antibiotic dosage gave way to drug target (ribosomal RNA operon) amplification at mid dosages whereas prophage-mediated drug efflux amplifications dominated at the highest dosages. All treatments exhibited E. coli increases in the copy number of efflux operons acrAB and emrE at rates that correlated with increases in population density. For strains where the inverted-U was no longer observed following the genetic manipulation of acrAB, it could be recovered by prolonging the antibiotic treatment at subMIC dosages.


Asunto(s)
Antibacterianos , Proteínas de Escherichia coli , Antibacterianos/farmacología , Antiportadores/genética , Variaciones en el Número de Copia de ADN , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Amplificación de Genes , Pruebas de Sensibilidad Microbiana
6.
PLoS Comput Biol ; 17(3): e1008817, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33735173

RESUMEN

Developing mathematical models to accurately predict microbial growth dynamics remains a key challenge in ecology, evolution, biotechnology, and public health. To reproduce and grow, microbes need to take up essential nutrients from the environment, and mathematical models classically assume that the nutrient uptake rate is a saturating function of the nutrient concentration. In nature, microbes experience different levels of nutrient availability at all environmental scales, yet parameters shaping the nutrient uptake function are commonly estimated for a single initial nutrient concentration. This hampers the models from accurately capturing microbial dynamics when the environmental conditions change. To address this problem, we conduct growth experiments for a range of micro-organisms, including human fungal pathogens, baker's yeast, and common coliform bacteria, and uncover the following patterns. We observed that the maximal nutrient uptake rate and biomass yield were both decreasing functions of initial nutrient concentration. While a functional form for the relationship between biomass yield and initial nutrient concentration has been previously derived from first metabolic principles, here we also derive the form of the relationship between maximal nutrient uptake rate and initial nutrient concentration. Incorporating these two functions into a model of microbial growth allows for variable growth parameters and enables us to substantially improve predictions for microbial dynamics in a range of initial nutrient concentrations, compared to keeping growth parameters fixed.


Asunto(s)
Candida , Enterobacteriaceae , Modelos Biológicos , Saccharomyces cerevisiae , Biotecnología , Candida/citología , Candida/crecimiento & desarrollo , Candida/fisiología , Proliferación Celular/fisiología , Biología Computacional , Ecología , Enterobacteriaceae/citología , Enterobacteriaceae/crecimiento & desarrollo , Enterobacteriaceae/fisiología , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/fisiología
7.
Ecol Lett ; 24(12): 2775-2795, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34453399

RESUMEN

Understanding how microbial traits affect the evolution and functioning of microbial communities is fundamental for improving the management of harmful microorganisms, while promoting those that are beneficial. Decades of evolutionary ecology research has focused on examining microbial cooperation, diversity, productivity and virulence but with one crucial limitation. The traits under consideration, such as public good production and resistance to antibiotics or predation, are often assumed to act in isolation. Yet, in reality, multiple traits frequently interact, which can lead to unexpected and undesired outcomes for the health of macroorganisms and ecosystem functioning. This is because many predictions generated in a single-trait context aimed at promoting diversity, reducing virulence or controlling antibiotic resistance can fail for systems where multiple traits interact. Here, we provide a much needed discussion and synthesis of the most recent research to reveal the widespread and diverse nature of multi-trait interactions and their consequences for predicting and controlling microbial community dynamics. Importantly, we argue that synthetic microbial communities and multi-trait mathematical models are powerful tools for managing the beneficial and detrimental impacts of microbial communities, such that past mistakes, like those made regarding the stewardship of antimicrobials, are not repeated.


Asunto(s)
Ecosistema , Microbiota , Ecología , Fenotipo
8.
Proc Biol Sci ; 287(1931): 20200761, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32673559

RESUMEN

Antimicrobial resistance frequently carries a fitness cost to a pathogen, measured as a reduction in growth rate compared to the sensitive wild-type, in the absence of antibiotics. Existing empirical evidence points to the following relationship between cost of resistance and virulence. If a resistant pathogen suffers a fitness cost in terms of reduced growth rate it commonly has lower virulence compared to the sensitive wild-type. If this cost is absent so is the reduction in virulence. Here we show, using experimental evolution of drug resistance in the fungal human pathogen Candida glabrata, that reduced growth rate of resistant strains need not result in reduced virulence. Phenotypically heterogeneous populations were evolved in parallel containing highly resistant sub-population small colony variants (SCVs) alongside sensitive sub-populations. Despite their low growth rate in the absence of an antifungal drug, the SCVs did not suffer a marked alteration in virulence compared with the wild-type ancestral strain, or their co-isolated sensitive strains. This contrasts with classical theory that assumes growth rate to positively correlate with virulence. Our work thus highlights the complexity of the relationship between resistance, basic life-history traits and virulence.


Asunto(s)
Candida glabrata , Farmacorresistencia Fúngica , Antifúngicos , Proteínas Fúngicas , Humanos , Pruebas de Sensibilidad Microbiana , Fenotipo
9.
PLoS Biol ; 13(4): e1002104, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25853342

RESUMEN

We need to find ways of enhancing the potency of existing antibiotics, and, with this in mind, we begin with an unusual question: how low can antibiotic dosages be and yet bacterial clearance still be observed? Seeking to optimise the simultaneous use of two antibiotics, we use the minimal dose at which clearance is observed in an in vitro experimental model of antibiotic treatment as a criterion to distinguish the best and worst treatments of a bacterium, Escherichia coli. Our aim is to compare a combination treatment consisting of two synergistic antibiotics to so-called sequential treatments in which the choice of antibiotic to administer can change with each round of treatment. Using mathematical predictions validated by the E. coli treatment model, we show that clearance of the bacterium can be achieved using sequential treatments at antibiotic dosages so low that the equivalent two-drug combination treatments are ineffective. Seeking to treat the bacterium in testing circumstances, we purposefully study an E. coli strain that has a multidrug pump encoded in its chromosome that effluxes both antibiotics. Genomic amplifications that increase the number of pumps expressed per cell can cause the failure of high-dose combination treatments, yet, as we show, sequentially treated populations can still collapse. However, dual resistance due to the pump means that the antibiotics must be carefully deployed and not all sublethal sequential treatments succeed. A screen of 136 96-h-long sequential treatments determined five of these that could clear the bacterium at sublethal dosages in all replicate populations, even though none had done so by 24 h. These successes can be attributed to a collateral sensitivity whereby cross-resistance due to the duplicated pump proves insufficient to stop a reduction in E. coli growth rate following drug exchanges, a reduction that proves large enough for appropriately chosen drug switches to clear the bacterium.


Asunto(s)
Antibacterianos/administración & dosificación , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/genética
10.
PLoS Comput Biol ; 12(12): e1005269, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-28036324

RESUMEN

Cross-feeding, a relationship wherein one organism consumes metabolites excreted by another, is a ubiquitous feature of natural and clinically-relevant microbial communities and could be a key factor promoting diversity in extreme and/or nutrient-poor environments. However, it remains unclear how readily cross-feeding interactions form, and therefore our ability to predict their emergence is limited. In this paper we developed a mathematical model parameterized using data from the biochemistry and ecology of an E. coli cross-feeding laboratory system. The model accurately captures short-term dynamics of the two competitors that have been observed empirically and we use it to systematically explore the stability of cross-feeding interactions for a range of environmental conditions. We find that our simple system can display complex dynamics including multi-stable behavior separated by a critical point. Therefore whether cross-feeding interactions form depends on the complex interplay between density and frequency of the competitors as well as on the concentration of resources in the environment. Moreover, we find that subtly different environmental conditions can lead to dramatically different results regarding the establishment of cross-feeding, which could explain the apparently unpredictable between-population differences in experimental outcomes. We argue that mathematical models are essential tools for disentangling the complexities of cross-feeding interactions.


Asunto(s)
Ambiente , Metabolismo/fisiología , Consorcios Microbianos/fisiología , Modelos Biológicos , Biología Computacional , Escherichia coli/metabolismo , Escherichia coli/fisiología , Glucosa/metabolismo
11.
PLoS Comput Biol ; 12(11): e1005216, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27898662

RESUMEN

Many antimicrobial and anti-tumour drugs elicit hormetic responses characterised by low-dose stimulation and high-dose inhibition. While this can have profound consequences for human health, with low drug concentrations actually stimulating pathogen or tumour growth, the mechanistic understanding behind such responses is still lacking. We propose a novel, simple but general mechanism that could give rise to hormesis in systems where an inhibitor acts on an enzyme. At its core is one of the basic building blocks in intracellular signalling, the dual phosphorylation-dephosphorylation motif, found in diverse regulatory processes including control of cell proliferation and programmed cell death. Our analytically-derived conditions for observing hormesis provide clues as to why this mechanism has not been previously identified. Current mathematical models regularly make simplifying assumptions that lack empirical support but inadvertently preclude the observation of hormesis. In addition, due to the inherent population heterogeneities, the presence of hormesis is likely to be masked in empirical population-level studies. Therefore, examining hormetic responses at single-cell level coupled with improved mathematical models could substantially enhance detection and mechanistic understanding of hormesis.


Asunto(s)
Fenómenos Fisiológicos Celulares/efectos de los fármacos , Hormesis/fisiología , Modelos Biológicos , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Quinasas/metabolismo , Animales , Simulación por Computador , Humanos , Modelos Químicos , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas/química , Proteínas Quinasas/efectos de los fármacos
12.
Nature ; 472(7343): 342-6, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21441905

RESUMEN

How is diversity maintained? Environmental heterogeneity is considered to be important, yet diversity in seemingly homogeneous environments is nonetheless observed. This, it is assumed, must either be owing to weak selection, mutational input or a fitness advantage to genotypes when rare. Here we demonstrate the possibility of a new general mechanism of stable diversity maintenance, one that stems from metabolic and physiological trade-offs. The model requires that such trade-offs translate into a fitness landscape in which the most fit has unfit near-mutational neighbours, and a lower fitness peak also exists that is more mutationally robust. The 'survival of the fittest' applies at low mutation rates, giving way to 'survival of the flattest' at high mutation rates. However, as a consequence of quasispecies-level negative frequency-dependent selection and differences in mutational robustness we observe a transition zone in which both fittest and flattest coexist. Although diversity maintenance is possible for simple organisms in simple environments, the more trade-offs there are, the wider the maintenance zone becomes. The principle may be applied to lineages within a species or species within a community, potentially explaining why competitive exclusion need not be observed in homogeneous environments. This principle predicts the enigmatic richness of metabolic strategies in clonal bacteria and questions the safety of lethal mutagenesis as an antimicrobial treatment.


Asunto(s)
Biodiversidad , Evolución Biológica , Aptitud Genética , Metabolismo/genética , Modelos Biológicos , Selección Genética , Adaptación Biológica/genética , Aptitud Genética/genética , Genotipo , Modelos Genéticos , Mutagénesis/genética , Saccharomyces cerevisiae , Selección Genética/genética , Procesos Estocásticos
13.
Ecol Lett ; 17(4): 491-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24495077

RESUMEN

In light of the dynamic nature of parasite host ranges and documented potential for rapid host shifts, the observed high host specificity of most parasites remains an ecological paradox. Different variants of host-use trade-offs have become a mainstay of theoretical explanations of the prevalence of host specialism, but empirical evidence for such trade-offs is rare. We propose an alternative theory based on basic features of the parasite life cycle: host selection and subsequent intrahost replication. We introduce a new concept of effective burst size that accounts for the fact that successful host selection does not guarantee intrahost replication. Our theory makes a general prediction that a parasite will expand its host range if its effective burst size is positive. An in silico model of bacteria-phage coevolution verifies our predictions and demonstrates that the tendency for relatively narrow host ranges in parasites can be explained even in the absence of trade-offs.


Asunto(s)
Bacterias/virología , Bacteriófagos/fisiología , Evolución Biológica , Especificidad del Huésped/fisiología , Estadios del Ciclo de Vida , Modelos Biológicos , Animales , Simulación por Computador
14.
Nature ; 455(7210): 220-3, 2008 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-18784724

RESUMEN

Given the difficulty of testing evolutionary and ecological theory in situ, in vitro model systems are attractive alternatives; however, can we appraise whether an experimental result is particular to the in vitro model, and, if so, characterize the systems likely to behave differently and understand why? Here we examine these issues using the relationship between phenotypic diversity and resource input in the T7-Escherichia coli co-evolving system as a case history. We establish a mathematical model of this interaction, framed as one instance of a super-class of host-parasite co-evolutionary models, and show that it captures experimental results. By tuning this model, we then ask how diversity as a function of resource input could behave for alternative co-evolving partners (for example, E. coli with lambda bacteriophages). In contrast to populations lacking bacteriophages, variation in diversity with differences in resources is always found for co-evolving populations, supporting the geographic mosaic theory of co-evolution. The form of this variation is not, however, universal. Details of infectivity are pivotal: in T7-E. coli with a modified gene-for-gene interaction, diversity is low at high resource input, whereas, for matching-allele interactions, maximal diversity is found at high resource input. A combination of in vitro systems and appropriately configured mathematical models is an effective means to isolate results particular to the in vitro system, to characterize systems likely to behave differently and to understand the biology underpinning those alternatives.


Asunto(s)
Bacteriófago T7/fisiología , Evolución Biológica , Escherichia coli/virología , Modelos Biológicos , Bacteriófago T7/genética , Bacteriófago T7/patogenicidad , Ecología , Escherichia coli/genética , Variación Genética , Interacciones Huésped-Patógeno , Fenotipo , Virulencia/genética
15.
Ecol Lett ; 16(10): 1267-76, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23902419

RESUMEN

Understanding how populations and communities respond to competition is a central concern of ecology. A seminal theoretical solution first formalised by Levins (and re-derived in multiple fields) showed that, in theory, the form of a trade-off should determine the outcome of competition. While this has become a central postulate in ecology it has evaded experimental verification, not least because of substantial technical obstacles. We here solve the experimental problems by employing synthetic ecology. We engineer strains of Escherichia coli with fixed resource allocations enabling accurate measurement of trade-off shapes between bacterial survival and multiplication in multiple environments. A mathematical chemostat model predicts different, and experimentally verified, trajectories of gene frequency changes as a function of condition-specific trade-offs. The results support Levins' postulate and demonstrates that otherwise paradoxical alternative outcomes witnessed in subtly different conditions are predictable.


Asunto(s)
Ecosistema , Escherichia coli/fisiología , Modelos Biológicos , Proteínas Bacterianas/metabolismo , Escherichia coli/crecimiento & desarrollo , Viabilidad Microbiana , Factor sigma/metabolismo
16.
PLoS Biol ; 8(9)2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20856906

RESUMEN

Is a group best off if everyone co-operates? Theory often considers this to be so (e.g. the "conspiracy of doves"), this understanding underpinning social and economic policy. We observe, however, that after competition between "cheat" and "co-operator" strains of yeast, population fitness is maximized under co-existence. To address whether this might just be a peculiarity of our experimental system or a result with broader applicability, we assemble, benchmark, dissect, and test a systems model. This reveals the conditions necessary to recover the unexpected result. These are 3-fold: (a) that resources are used inefficiently when they are abundant, (b) that the amount of co-operation needed cannot be accurately assessed, and (c) the population is structured, such that co-operators receive more of the resource than the cheats. Relaxing any of the assumptions can lead to population fitness being maximized when cheats are absent, which we experimentally demonstrate. These three conditions will often be relevant, and hence in order to understand the trajectory of social interactions, understanding the dynamics of the efficiency of resource utilization and accuracy of information will be necessary.


Asunto(s)
Conducta Cooperativa , Decepción , Procesos de Grupo , Humanos , Modelos Teóricos
17.
mBio ; 14(1): e0271122, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36651897

RESUMEN

Pneumocystis jirovecii kills hundreds of thousands of immunocompromised patients each year. Yet many aspects of the biology of this obligate pathogen remain obscure because it is not possible to culture the fungus in vitro independently of its host. Consequently, our understanding of Pneumocystis pathobiology is heavily reliant upon bioinformatic inferences. We have exploited a powerful combination of genomic and phylogenetic approaches to examine the evolution of transcription factors in Pneumocystis species. We selected protein families (Pfam families) that correspond to transcriptional regulators and used bioinformatic approaches to compare these families in the seven Pneumocystis species that have been sequenced to date with those from other yeasts, other human and plant pathogens, and other obligate parasites. Some Pfam families of transcription factors have undergone significant reduction during their evolution in the Pneumocystis genus, and other Pfam families have been lost or appear to be in the process of being lost. Meanwhile, other transcription factor families have been retained in Pneumocystis species, and some even appear to have undergone expansion. On this basis, Pneumocystis species seem to have retained transcriptional regulators that control chromosome maintenance, ribosomal gene regulation, RNA processing and modification, and respiration. Meanwhile, regulators that promote the assimilation of alternative carbon sources, amino acid, lipid, and sterol biosynthesis, and iron sensing and homeostasis appear to have been lost. Our analyses of transcription factor retention, loss, and gain provide important insights into the biology and lifestyle of Pneumocystis. IMPORTANCE Pneumocystis jirovecii is a major fungal pathogen of humans that infects healthy individuals, colonizing the lungs of infants. In immunocompromised and transplant patients, this fungus causes life-threatening pneumonia, and these Pneumocystis infections remain among the most common and serious infections in HIV/AIDS patients. Yet we remain remarkably ignorant about the biology and epidemiology of Pneumocystis due to the inability to culture this fungus in vitro. Our analyses of transcription factor retentions, losses, and gains in sequenced Pneumocystis species provide valuable new views of their specialized biology, suggesting the retention of many metabolic and stress regulators and the loss of others that are essential in free-living fungi. Given the lack of in vitro culture methods for Pneumocystis, this powerful bioinformatic approach has advanced our understanding of the lifestyle of P. jirovecii and the nature of its dependence on the host for survival.


Asunto(s)
Pneumocystis carinii , Pneumocystis , Neumonía por Pneumocystis , Humanos , Pneumocystis/genética , Filogenia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neumonía por Pneumocystis/microbiología , Pneumocystis carinii/genética , Genómica , Estilo de Vida
18.
PLoS Pathog ; 6(9): e1001125, 2010 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-20941353

RESUMEN

Although polymicrobial infections, caused by combinations of viruses, bacteria, fungi and parasites, are being recognised with increasing frequency, little is known about the occurrence of within-species diversity in bacterial infections and the molecular and evolutionary bases of this diversity. We used multiple approaches to study the genomic and phenotypic diversity among 226 Escherichia coli isolates from deep and closed visceral infections occurring in 19 patients. We observed genomic variability among isolates from the same site within 11 patients. This diversity was of two types, as patients were infected either by several distinct E. coli clones (4 patients) or by members of a single clone that exhibit micro-heterogeneity (11 patients); both types of diversity were present in 4 patients. A surprisingly wide continuum of antibiotic resistance, outer membrane permeability, growth rate, stress resistance, red dry and rough morphotype characteristics and virulence properties were present within the isolates of single clones in 8 of the 11 patients showing genomic micro-heterogeneity. Many of the observed phenotypic differences within clones affected the trade-off between self-preservation and nutritional competence (SPANC). We showed in 3 patients that this phenotypic variability was associated with distinct levels of RpoS in co-existing isolates. Genome mutational analysis and global proteomic comparisons in isolates from a patient revealed a star-like relationship of changes amongst clonally diverging isolates. A mathematical model demonstrated that multiple genotypes with distinct RpoS levels can co-exist as a result of the SPANC trade-off. In the cases involving infection by a single clone, we present several lines of evidence to suggest diversification during the infectious process rather than an infection by multiple isolates exhibiting a micro-heterogeneity. Our results suggest that bacteria are subject to trade-offs during an infectious process and that the observed diversity resembled results obtained in experimental evolution studies. Whatever the mechanisms leading to diversity, our results have strong medical implications in terms of the need for more extensive isolate testing before deciding on antibiotic therapies.


Asunto(s)
Antibacterianos/farmacología , Evolución Biológica , Farmacorresistencia Bacteriana/genética , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Escherichia coli/patogenicidad , Variación Genética , Virulencia/genética , Adulto , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Movimiento Celular , ADN Bacteriano/genética , Electroforesis en Gel Bidimensional , Escherichia coli/clasificación , Escherichia coli/genética , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/genética , Femenino , Genoma Bacteriano , Genotipo , Humanos , Peróxido de Hidrógeno/farmacología , Immunoblotting , Ratones , Pruebas de Sensibilidad Microbiana , Modelos Teóricos , Mutación/genética , Oxidantes/farmacología , Reacción en Cadena de la Polimerasa , Factor sigma/genética , Factor sigma/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Virulencia/genética
19.
Nature ; 441(7092): 498-501, 2006 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-16724064

RESUMEN

Understanding the conditions that promote the maintenance of cooperation is a classic problem in evolutionary biology. The essence of this dilemma is captured by the 'tragedy of the commons': how can a group of individuals that exploit resources in a cooperative manner resist invasion by 'cheaters' who selfishly use common resources to maximize their individual reproduction at the expense of the group? Here, we investigate this conflict through experimental competitions between isogenic cheater and cooperator strains of yeast with alternative pathways of glucose metabolism, and by using mathematical models of microbial biochemistry. We show that both coexistence and competitive exclusion are possible outcomes of this conflict, depending on the spatial and temporal structure of the environment. Both of these outcomes are driven by trade-offs between the rate and efficiency of conversion of resources into offspring that are mediated by metabolic intermediates.


Asunto(s)
Evolución Biológica , Glucosa/metabolismo , Modelos Biológicos , Levaduras/citología , Levaduras/fisiología , Respiración de la Célula , Ambiente , Fermentación , Teoría del Juego , Estaciones del Año , Levaduras/metabolismo
20.
Nat Commun ; 13(1): 2917, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614098

RESUMEN

Antibiotic resistance represents a growing medical concern where raw, clinical datasets are under-exploited as a means to track the scale of the problem. We therefore sought patterns of antibiotic resistance in the Antimicrobial Testing Leadership and Surveillance (ATLAS) database. ATLAS holds 6.5M minimal inhibitory concentrations (MICs) for 3,919 pathogen-antibiotic pairs isolated from 633k patients in 70 countries between 2004 and 2017. We show most pairs form coherent, although not stationary, timeseries whose frequencies of resistance are higher than other databases, although we identified no systematic bias towards including more resistant strains in ATLAS. We sought data anomalies whereby MICs could shift for methodological and not clinical or microbiological reasons and found artefacts in over 100 pathogen-antibiotic pairs. Using an information-optimal clustering methodology to classify pathogens into low and high antibiotic susceptibilities, we used ATLAS to predict changes in resistance. Dynamics of the latter exhibit complex patterns with MIC increases, and some decreases, whereby subpopulations' MICs can diverge. We also identify pathogens at risk of developing clinical resistance in the near future.


Asunto(s)
Antiinfecciosos , Metadatos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Farmacorresistencia Microbiana , Humanos , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA