Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Glia ; 67(12): 2221-2247, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31429127

RESUMEN

Astrocytes are key cellular partners for neurons in the central nervous system. Astrocytes react to virtually all types of pathological alterations in brain homeostasis by significant morphological and molecular changes. This response was classically viewed as stereotypical and is called astrogliosis or astrocyte reactivity. It was long considered as a nonspecific, secondary reaction to pathological conditions, offering no clues on disease-causing mechanisms and with little therapeutic value. However, many studies over the last 30 years have underlined the crucial and active roles played by astrocytes in physiology, ranging from metabolic support, synapse maturation, and pruning to fine regulation of synaptic transmission. This prompted researchers to explore how these new astrocyte functions were changed in disease, and they reported alterations in many of them (sometimes beneficial, mostly deleterious). More recently, cell-specific transcriptomics revealed that astrocytes undergo massive changes in gene expression when they become reactive. This observation further stressed that reactive astrocytes may be very different from normal, nonreactive astrocytes and could influence disease outcomes. To make the picture even more complex, both normal and reactive astrocytes were shown to be molecularly and functionally heterogeneous. Very little is known about the specific roles that each subtype of reactive astrocytes may play in different disease contexts. In this review, we have interrogated researchers in the field to identify and discuss points of consensus and controversies about reactive astrocytes, starting with their very name. We then present the emerging knowledge on these cells and future challenges in this field.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Enfermedades del Sistema Nervioso Central/metabolismo , Animales , Astrocitos/patología , Encéfalo/patología , Enfermedades del Sistema Nervioso Central/patología , Gliosis/metabolismo , Gliosis/patología , Humanos
2.
Neurobiol Aging ; 90: 135-146, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32171592

RESUMEN

In Alzheimer disease (AD), astrocytes undergo complex changes and become reactive. The consequences of this reaction are still unclear. To evaluate the net impact of reactive astrocytes in AD, we developed viral vectors targeting astrocytes that either activate or inhibit the Janus kinase-signal transducer and activator of transcription 3 (JAK2-STAT3) pathway, a central cascade controlling astrocyte reaction. We aimed to evaluate whether reactive astrocytes contribute to tau as well as amyloid pathologies in the hippocampus of 3xTg-AD mice, an AD model that develops tau hyper-phosphorylation and amyloid deposition. JAK2-STAT3 pathway-mediated modulation of reactive astrocytes in 25% of the hippocampus of 3xTg-AD mice did not significantly influence tau phosphorylation or amyloid processing and deposition at early, advanced, and terminal disease stage. Interestingly, inhibition of the JAK2-STAT3 pathway in hippocampal astrocytes did not improve spatial memory in the Y maze but it did reduce anxiety in the elevated plus maze. Our unique approach to specifically manipulate reactive astrocytes in situ show they may impact behavioral outcomes without influencing tau or amyloid pathology.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Astrocitos/metabolismo , Enfermedad de Alzheimer/patología , Proteínas Amiloidogénicas/metabolismo , Animales , Astrocitos/patología , Modelos Animales de Enfermedad , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/patología , Janus Quinasa 2/metabolismo , Ratones Transgénicos , Fosforilación , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/genética , Proteínas tau/metabolismo
3.
Acta Neuropathol Commun ; 6(1): 104, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30322407

RESUMEN

Astrocyte reactivity and neuroinflammation are hallmarks of CNS pathological conditions such as Alzheimer's disease. However, the specific role of reactive astrocytes is still debated. This controversy may stem from the fact that most strategies used to modulate astrocyte reactivity and explore its contribution to disease outcomes have only limited specificity. Moreover, reactive astrocytes are now emerging as heterogeneous cells and all types of astrocyte reactivity may not be controlled efficiently by such strategies.Here, we used cell type-specific approaches in vivo and identified the JAK2-STAT3 pathway, as necessary and sufficient for the induction and maintenance of astrocyte reactivity. Modulation of this cascade by viral gene transfer in mouse astrocytes efficiently controlled several morphological and molecular features of reactivity. Inhibition of this pathway in mouse models of Alzheimer's disease improved three key pathological hallmarks by reducing amyloid deposition, improving spatial learning and restoring synaptic deficits.In conclusion, the JAK2-STAT3 cascade operates as a master regulator of astrocyte reactivity in vivo. Its inhibition offers new therapeutic opportunities for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Astrocitos/patología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Apolipoproteínas E/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/citología , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Transgénicos , Mutación/genética , Presenilina-1/genética , Presenilina-1/metabolismo , Factor de Transcripción STAT1/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA