Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Philos Trans A Math Phys Eng Sci ; 380(2215): 20200443, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34865527

RESUMEN

The effect of the 2018 extreme meteorological conditions in Europe on methane (CH4) emissions is examined using estimates from four atmospheric inversions calculated for the period 2005-2018. For most of Europe, we find no anomaly in 2018 compared to the 2005-2018 mean. However, we find a positive anomaly for the Netherlands in April, which coincided with positive temperature and soil moisture anomalies suggesting an increase in biogenic sources. We also find a negative anomaly for the Netherlands for September-October, which coincided with a negative anomaly in soil moisture, suggesting a decrease in soil sources. In addition, we find a positive anomaly for Serbia in spring, summer and autumn, which coincided with increases in temperature and soil moisture, again suggestive of changes in biogenic sources, and the annual emission for 2018 was 33 ± 38% higher than the 2005-2017 mean. These results indicate that CH4 emissions from areas where the natural source is thought to be relatively small can still vary due to meteorological conditions. At the European scale though, the degree of variability over 2005-2018 was small, and there was negligible impact on the annual CH4 emissions in 2018 despite the extreme meteorological conditions. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'.


Asunto(s)
Metano , Europa (Continente) , Metano/análisis , Estaciones del Año
2.
J Environ Manage ; 183(Pt 3): 959-971, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27681872

RESUMEN

Emission data from EDGAR (Emissions Database for Global Atmospheric Research), rather than economic data, are used to estimate the effect of policies and of the global exports of policy-regulated goods, such as vehicles, on global emissions. The results clearly show that the adoption of emission standards for the road transport sector in the two main global markets (Europe and North America) has led to the global proliferation of emission-regulated vehicles through exports, regardless the domestic regulation in the country of destination. It is in fact more economically convenient for vehicle manufacturers to produce and sell a standard product to the widest possible market and in the greatest possible amounts. The EU effect (European Union effect) is introduced as a global counterpart to the California effect. The former is a direct consequence of the penetration of the EURO standards in the global markets by European and Japanese manufacturers, which effectively export the standard worldwide. We analyze the effect on PM2.5 emissions by comparing a scenario of non-EURO standards against the current estimates provided by EDGAR. We find that PM2.5 emissions were reduced by more than 60% since the 1990s worldwide. Similar investigations on other pollutants confirm the hypothesis that the combined effect of technological regulations and their diffusion through global markets can also produce a positive effect on the global environment. While we acknowledge the positive feedback, we also demonstrate that current efforts and standards will be totally insufficient should the passenger car fleets in emerging markets reach Western per capita figures. If emerging countries reach the per capita vehicle number of the USA and Europe under current technological conditions, then the world will suffer pre-1990 emission levels.


Asunto(s)
Unión Europea , Vehículos a Motor/normas , Emisiones de Vehículos , Contaminantes Atmosféricos , California , Política Ambiental , Europa (Continente) , Industria Manufacturera/normas , Estados Unidos
3.
Environ Int ; 172: 107760, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36708630

RESUMEN

The EU, seeking to be a global leader in the fight against climate change, is moving ahead with ambitious policies to mitigate greenhouse gases emissions. In this context, the Fit for 55 package (FF55) is a set of proposals to revise and update EU legislation, to ensure that policies are in line with the climate goals of cutting emissions by at least 55% by 2030. Whilst these policies are designed for climate purposes, they will have positive side-effects (co-benefits) on air quality. Separately, additional policies are also in place to reduce emissions of related air pollutants and to improve air quality concentrations on EU territory. In this work, through a modelling study, we analyse the benefits of these policies via the health benefits arising from the resulting reductions in yearly average PM2.5 concentrations. Results are analysed by assessing and comparing morbidity and mortality impacts as computed using both the HRAPIE (Health risks of air pollution in Europe, WHO, as implemented in the CaRBonH model) and the GBD (Global Burden of Disease, as implemented in FASST-GBD model) approaches. Even when considering the uncertainty and variability in the results obtained using the two approaches, it is clear that EU policies can bring health and economic benefit in EU, with several Billions of Euro of benefits both in terms of morbidity and mortality indicators.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Gases de Efecto Invernadero , Material Particulado/análisis , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Gases de Efecto Invernadero/análisis , Cambio Climático , Políticas
4.
Nat Food ; 3(11): 942-956, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-37118218

RESUMEN

Food systems are important contributors to global emissions of air pollutants. Here, building on the EDGAR-FOOD database of greenhouse gas emissions, we estimate major air pollutant compounds emitted by different stages of the food system, at country level, during the past 50 years, resulting from food production, processing, packaging, transport, retail, consumption and disposal. Air pollutant estimates from food systems include total nitrogen and its components (N2O, NH3 and NOx), SO2, CO, non-methane volatile organic compounds (NMVOC) and particulate matter (PM10, PM2.5, black carbon and organic carbon). We show that 10% to 90% of air pollutant emissions come from food systems, resulting from steady increases over the past five decades. In 2018, more than half of total N (and 87% of ammonia) emissions come from food systems and up to 35% of particulate matter. Food system emissions are responsible for about 22.4% of global mortality due to poor air quality and 1.4% of global crop production losses.

5.
Nat Food ; 2(3): 198-209, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37117443

RESUMEN

We have developed a new global food emissions database (EDGAR-FOOD) estimating greenhouse gas (GHG; CO2, CH4, N2O, fluorinated gases) emissions for the years 1990-2015, building on the Emissions Database of Global Atmospheric Research (EDGAR), complemented with land use/land-use change emissions from the FAOSTAT emissions database. EDGAR-FOOD provides a complete and consistent database in time and space of GHG emissions from the global food system, from production to consumption, including processing, transport and packaging. It responds to the lack of detailed data for many countries by providing sectoral contributions to food-system emissions that are essential for the design of effective mitigation actions. In 2015, food-system emissions amounted to 18 Gt CO2 equivalent per year globally, representing 34% of total GHG emissions. The largest contribution came from agriculture and land use/land-use change activities (71%), with the remaining were from supply chain activities: retail, transport, consumption, fuel production, waste management, industrial processes and packaging. Temporal trends and regional contributions of GHG emissions from the food system are also discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA