Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioprocess Biosyst Eng ; 42(3): 499-512, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30536123

RESUMEN

Repeated batch semi-solid fermentation (sSF) process using wheat straw substrate and fungal growth of Ganoderma lucidum on solid substrate was studied for production of laccase. pH showed significant effect on laccase production. Highest laccase activity with pH controlled to 5.0 in batch sSF was 15257.2 ± 353.4 U L- 1 on 9th day. In repeated batch process at pH 5.0, insoluble biomass substrate and fungal growth were reused after liquid part of medium was replaced with glucose, ammonium phosphate (best nitrogen source) and combined glucose and ammonium phosphate solution separately. Refilled to 80% w v- 1 of initial soluble sugar of first batch resulted in highest laccase production with peak activity after 4 days from replacement. Production of enzyme increased from 15257.2 U L- 1 in first batch to cumulative 90164.4 U L- 1 in 29 days after six repeated batches, productivity increased from 1680.2 to 3110.3 U L- 1 day- 1 (∼ 1.9 times) due to reductions in inhibitory effects and time required for fungal growth. Utilization of wheat straw in repeated batch sSF was supported by composition analysis and morphological changes (scanning electron microscopy) of substrate. Economic production of laccase using agricultural residues in repeated batch sSF could be possible.


Asunto(s)
Biomasa , Proteínas Fúngicas/biosíntesis , Lacasa/biosíntesis , Reishi/crecimiento & desarrollo , Triticum/química , Técnicas de Cultivo Celular por Lotes
2.
J Environ Manage ; 193: 558-566, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28262421

RESUMEN

Sweet sorghum bagasse (SSB) generated in large quantities could be hydrolyzed to sugar and then fermented to green fuels. The hydrolysis of SSB polysaccharides interlocked in recalcitrant lignin network is the major problem. Pretreatment of SSB in SSF by using Coriolus versicolor with CuSO4-syringic acid supplements for effects on production of ligninocellulolytic enzymes, lignin degradation and selectivity values (SV) were studied. C. versicolor was selected based on high ligninolytic and low cellulolytic abilily. Individually, CuSO4 increased the activities of laccase (4.9 folds) and PPO (1.9 folds); syringic acid increased LiP (13 folds), AAO (2.8 folds) and laccase (5.6 folds) resulting in increased lignin degradation and SVs. Combined syringic acid (4.4 µmol g-1 SSB) and CuSO4 (4.4 µmol g-1 SSB) increased the activities of laccase, LiP, MnP, PPO and AAO by 11.2, 17.6, 2.8, 2.4 and 2.3 folds respectively due to synergistic effect, resulting in maximum lignin degradation 35.9 ± 1.3% (w w-1) (1.86 fold) and highest SV 3.07 (4.7 fold). Enzymatic hydrolysis of pretreated SSB yielded higher (∼2.2 times) fermentable sugar. Pretreated SSB was characterized by XRD, SEM, FTIR and TGA/DTG analysis to confirm results. It is possible to improve fungal pretreatment of agricultural waste by combination of supplements.


Asunto(s)
Lignina/metabolismo , Sorghum/metabolismo , Celulosa/metabolismo , Hongos/metabolismo , Hidrólisis , Lacasa/metabolismo
3.
Int J Phytoremediation ; 18(7): 697-703, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26682583

RESUMEN

Three Arbuscular mycorrhizal fungi (AMF) from Glomus, Acaulospora and Scutellospora, and four plant growth promoting rhizobacteria (PGPR) isolates related to genera Streptomyces, Azotobacter, Pseudomonas and Paenibacillus were found to be effective in phytoremediation of Fe(3+) contaminated soil where Pennisetum glaucum and Sorghum bicolor were growing as host plants. Co-inoculation of AMF and PGPR showed better results in comparison to either, AMF and PGPR under pot conditions. Both AMF and PGPR were able to produce siderophores. AMF and PGPR associated to P. glaucum and S. bicolor plants increased the extent of iron absorption. AMF and PGPR combination exhibited superior (p < 0.01) phytoremediation efficiency with P. glaucum compared to S. bicolor. These findings warrant further investigations of these synergistic interactions and large-scale in situ studies for bioremediation of iron-contaminated soils.


Asunto(s)
Bacterias/metabolismo , Hierro/metabolismo , Micorrizas/metabolismo , Pennisetum/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Sorghum/metabolismo , Biodegradación Ambiental
4.
3 Biotech ; 8(1): 35, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29291148

RESUMEN

The objective of the work was to study the effect of agri-residue solid contents (2-20% w v-1) in fermentation medium on fungal growth, soluble and insoluble nutrient consumption and laccase production. Fungal strain Ganoderma lucidium and wheat straw substrate was screened for maximum laccase production. At low solid content submerged fermentation (SmF), fungus utilized mainly soluble nutrient and was unable to access the insoluble nutrient in media due to lack of contact with solid. At high solid content solid-state fermentation (SF), fungi grew on solid surface with dense and thin hyphae, utilized mainly insoluble nutrient. At medium solid content (8% w v-1) semi-solid fermentation (sSF), fungi grew on solid substrates with network of thick intercrossed hyphae, utilized both soluble and insoluble nutrients optimally resulting in highest fungal growth and laccase activity (~ 3.5 folds than in SmF and ~ 2.5 folds than in SF). Importance of soluble and insoluble nutrients was also established after isolation of their individual effects. Morphology of fungal growth (SEM), composition, thermal analysis (TGA/DTG) of substrates confirmed the results. sSF showed potential for the production of enzymes through utilization of agricultural residues as substrate.

5.
3 Biotech ; 7(2): 110, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28567622

RESUMEN

Sweet sorghum bagasse (SSB) from food processing and agricultural industry has attracted the attention for uses in production of biofuel, enzymes and other products. The alteration in lignocellulolytic enzymes by use of supplements in fungal pretreatment of SSB to achieve higher lignin degradation, selectivity value and enzymatic hydrolysis to fermentable sugar was studied. Fungal strain Coriolus versicolor was selected for pretreatment due to high ligninolytic and low cellulolytic enzyme production resulting in high lignin degradation and selectivity value. SSB was pretreated with supplements of veratryl alcohol, syringic acid, catechol, gallic acid, vanillin, guaiacol, CuSO4 and MnSO4. The best results were obtained with CuSO4, gallic acid and syringic acid supplements. CuSO4 increased the activities of laccase (4.9-fold) and polyphenol oxidase (1.9-fold); gallic acid increased laccase (3.5-fold) and manganese peroxidase (2.5-fold); and syringic acid increased laccase (5.6-fold), lignin peroxidase (13-fold) and arylalcohol oxidase (2.8-fold) resulting in enhanced lignin degradations and selectivity values than the control. Reduced cellulolytic enzyme activities resulted in high cellulose recovery. Enzymatic hydrolysis of pretreated SSB yielded higher sugar due to degradation of lignin and reduced the crystallinity of cellulose. The study showed that supplements could be used to improve the pretreatment process. The results were confirmed by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric/differential thermogravimetric analysis of SSB.

6.
Bioresour Technol ; 236: 49-59, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28390277

RESUMEN

The objective of this work was to study the increase in multiple lignolytic enzyme productions through the use of supplements in combination in pretreatment of sweet sorghum bagasse (SSB) by Coriolus versicolor such that enzymes act synergistically to maximize the lignin degradation and selectivity. Enzyme activities were enhanced by metallic salts and phenolic compound supplements in SSF. Supplement of syringic acid increased the activities of LiP, AAO and laccase; gallic acid increased MnP; CuSO4 increased laccase and PPO to improve the lignin degradations and selectivity individually, higher than control. Combination of supplements optimized by RSM increased the production of laccase, LiP, MnP, PPO and AAO by 17.2, 45.5, 3.5, 2.4 and 3.6 folds respectively for synergistic action leading to highest lignin degradation (2.3 folds) and selectivity (7.1 folds). Enzymatic hydrolysis of pretreated SSB yielded ∼2.43 times fermentable sugar. This technique could be widely applied for pretreatment and enzyme productions.


Asunto(s)
Lignina/metabolismo , Sorghum/metabolismo , Hongos/metabolismo , Hidrólisis , Lacasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA