Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200118

RESUMEN

Drought represents a major abiotic stress factor negatively affecting growth, yield and tuber quality of potatoes. Quantitative trait locus (QTL) analyses were performed in cultivated potatoes for drought tolerance index DRYM (deviation of relative starch yield from the experimental median), tuber starch content, tuber starch yield, tuber fresh weight, selected transcripts and metabolites under control and drought stress conditions. Eight genomic regions of major interest for drought tolerance were identified, three representing standalone DRYM QTL. Candidate genes, e.g., from signaling pathways for ethylene, abscisic acid and brassinosteroids, and genes encoding cell wall remodeling enzymes were identified within DRYM QTL. Co-localizations of DRYM QTL and QTL for tuber starch content, tuber starch yield and tuber fresh weight with underlying genes of the carbohydrate metabolism were observed. Overlaps of DRYM QTL with metabolite QTL for ribitol or galactinol may indicate trade-offs between starch and compatible solute biosynthesis. Expression QTL confirmed the drought stress relevance of selected transcripts by overlaps with DRYM QTL. Bulked segregant analyses combined with next-generation sequencing (BSAseq) were used to identify mutations in genes under the DRYM QTL on linkage group 3. Future analyses of identified genes for drought tolerance will give a better insight into drought tolerance in potatoes.


Asunto(s)
Cromosomas de las Plantas/genética , Sequías , Genoma de Planta , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Solanum tuberosum/genética , Tetraploidía , Mapeo Cromosómico , Ligamiento Genético , Genómica , Fenotipo , Tubérculos de la Planta/genética , Solanum tuberosum/fisiología
2.
Sci Rep ; 14(1): 5476, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443466

RESUMEN

Climate changes leading to increasingly longer seasonal drought periods in large parts of the world increase the necessity for breeding drought-tolerant crops. Cultivated potato (Solanum tuberosum), the third most important vegetable crop worldwide, is regarded as drought-sensitive due to its shallow root architecture. Two German tetraploid potato cultivars differing in drought tolerance and their F1-progeny were evaluated under various drought scenarios. Bulked segregant analyses were combined with whole-genome sequencing (BSA-Seq) using contrasting bulks of drought-tolerant and drought-sensitive F1-clones. Applying QTLseqr, 15 QTLs comprising 588,983 single nucleotide polymorphisms (SNPs) in 2325 genes associated with drought stress tolerance were identified. SeqSNP analyses in an association panel of 34 mostly starch potato varieties using 1-8 SNPs for each of 188 selected genes narrowed the number of candidate genes down to 10. In addition, ent-kaurene synthase B was the only gene present under QTL 10. Eight of the identified genes (StABP1, StBRI1, StKS, StLEA, StPKSP1, StPKSP2, StYAB5, and StZOG1) address plant development, the other three genes (StFATA, StHGD and StSYP) contribute to plant protection under drought stress. Allelic variation in these genes might be explored in future breeding for drought-tolerant potato varieties.


Asunto(s)
Resistencia a la Sequía , Solanum tuberosum , Humanos , Solanum tuberosum/genética , Tetraploidía , Fitomejoramiento , Sequías
3.
Genes (Basel) ; 12(4)2021 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-33800602

RESUMEN

Potato is regarded as drought sensitive and most vulnerable to climate changes. Its cultivation in drought prone regions or under conditions of more frequent drought periods, especially in subtropical areas, requires intensive research to improve drought tolerance in order to guarantee high yields under limited water supplies. A candidate gene approach was used to develop functional simple sequence repeat (SSR) markers for association studies in potato with the aim to enhance breeding for drought tolerance. SSR primer combinations, mostly surrounding interrupted complex and compound repeats, were derived from 103 candidate genes for drought tolerance. Validation of the SSRs was performed in an association panel representing 34 mainly starch potato cultivars. Seventy-five out of 154 SSR primer combinations (49%) resulted in polymorphic, highly reproducible banding patterns with polymorphic information content (PIC) values between 0.11 and 0.90. Five SSR markers identified allelic differences between the potato cultivars that showed significant associations with drought sensitivity. In all cases, the group of drought-sensitive cultivars showed predominantly an additional allele, indicating that selection against these alleles by marker-assisted breeding might confer drought tolerance. Further studies of these differences in the candidate genes will elucidate their role for an improved performance of potatoes under water-limited conditions.


Asunto(s)
Repeticiones de Microsatélite , Solanum tuberosum/fisiología , Estrés Fisiológico , Biología Computacional/métodos , ADN de Plantas/genética , Sequías , Estudios de Asociación Genética , Fitomejoramiento , Solanum tuberosum/genética
4.
Front Plant Sci ; 11: 1071, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793257

RESUMEN

Climate models predict an increased likelihood of drought, demanding efficient selection for drought tolerance to maintain yield stability. Classic tolerance breeding relies on selection for yield in arid environments, which depends on yield trials and takes decades. Breeding could be accelerated by marker-assisted selection (MAS). As an alternative to genomic markers, transcript and metabolite markers have been suggested for important crops but also for orphan corps. For potato, we suggested a random-forest-based model that predicts tolerance from leaf metabolite and transcript levels with a precision of more than 90% independent of the agro-environment. To find out how the model based selection compares to yield-based selection in arid environments, we applied this approach to a population of 200 tetraploid Solanum tuberosum ssp. tuberosum lines segregating for drought tolerance. Twenty-four lines were selected into a phenotypic subpopulation (PPt) for superior tolerance based on relative tuber starch yield data from three drought stress trials. Two subpopulations with superior (MPt) and inferior (MPs) tolerance were selected based on drought tolerance predictions based on leaf metabolite and transcript levels from two sites. The 60 selected lines were phenotyped for yield and drought tolerance in 10 multi-environment drought stress trials representing typical Central European drought scenarios. Neither selection affected development or yield potential. Lines with superior drought tolerance and high yields under stress were over-represented in both populations selected for superior tolerance, with a higher number in PPt compared to MPt. However, selection based on leaf metabolites may still be an alternative to yield-based selection in arid environments as it works on leaves sampled in breeder's fields independent of drought trials. As the selection against low tolerance was ineffective, the method is best used in combination with tools that select against sensitive genotypes. Thus, metabolic and transcript marker-based selection for drought tolerance is a viable alternative to the selection on yield in arid environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA