Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Proteins ; 90(5): 1054-1080, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34580920

RESUMEN

Understanding the molecular evolution of the SARS-CoV-2 virus as it continues to spread in communities around the globe is important for mitigation and future pandemic preparedness. Three-dimensional structures of SARS-CoV-2 proteins and those of other coronavirusess archived in the Protein Data Bank were used to analyze viral proteome evolution during the first 6 months of the COVID-19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48 000 viral isolates revealed how each one of 29 viral proteins have undergone amino acid changes. Catalytic residues in active sites and binding residues in protein-protein interfaces showed modest, but significant, numbers of substitutions, highlighting the mutational robustness of the viral proteome. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi-Gaussian distribution. Detailed results are presented for potential drug discovery targets and the four structural proteins that comprise the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and protein-protein and protein-nucleic acid interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure-based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance.


Asunto(s)
COVID-19 , Pandemias , Aminoácidos , Humanos , Estudios Prospectivos , Proteoma , SARS-CoV-2 , Proteínas Virales/genética , Proteínas Virales/metabolismo
2.
Curr Issues Mol Biol ; 41: 381-468, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32938804

RESUMEN

The therapeutic promise of oncolytic viruses (OVs) rests on their ability to both selectively kill tumor cells and induce anti-tumor immunity. The potential of tumors to be recognized and eliminated by an effective anti-tumor immune response has been spurred on by the discovery that immune checkpoint inhibition can overcome tumor-specific cytotoxic T cell (CTL) exhaustion and provide durable responses in multiple tumor indications. OV-mediated tumor destruction is now recognized as a powerful means to assist in the development of anti-tumor immunity for two important reasons: (i) OVs, through the elicitation of an anti-viral response and the production of type I interferon, are potent stimulators of inflammation and can be armed with transgenes to further enhance anti-tumor immune responses; and (ii) lytic activity can promote the release of tumor-associated antigens (TAAs) and tumor neoantigens that function as in situ tumor-specific vaccines to elicit adaptive immunity. Oncolytic herpes simplex viruses (oHSVs) are among the most widely studied OVs for the treatment of solid malignancies, and Amgen's oHSV Imlygic® for the treatment of melanoma is the only OV approved in major markets. Here we describe important biological features of HSV that make it an attractive OV, clinical experience with HSV-based vectors, and strategies to increase applicability to cancer treatment.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Virus Oncolíticos/inmunología , Simplexvirus/inmunología , Inmunidad Adaptativa/efectos de los fármacos , Inmunidad Adaptativa/inmunología , Animales , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Linfocitos T Citotóxicos/inmunología
3.
Int J Mol Sci ; 21(22)2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33233403

RESUMEN

Oncolytic herpes simplex viruses (oHSV) are under development for the treatment of a variety of human cancers, including breast cancer, a leading cause of cancer mortality among women worldwide. Here we report the design of a fully retargeted oHSV for preferential infection of breast cancer cells through virus recognition of GFRα1, the cellular receptor for glial cell-derived neurotrophic factor (GDNF). GFRα1 displays a limited expression profile in normal adult tissue, but is upregulated in a subset of breast cancers. We generated a recombinant HSV expressing a completely retargeted glycoprotein D (gD), the viral attachment/entry protein, that incorporates pre-pro-GDNF in place of the signal peptide and HVEM binding domain of gD and contains a deletion of amino acid 38 to eliminate nectin-1 binding. We show that GFRα1 is necessary and sufficient for infection by the purified recombinant virus. Moreover, this virus enters and spreads in GFRα1-positive breast cancer cells in vitro and caused tumor regression upon intratumoral injection in vivo. Given the heterogeneity observed between and within individual breast cancers at the molecular level, these results expand our ability to deliver oHSV to specific tumors and suggest opportunities to enhance drug or viral treatments aimed at other receptors.


Asunto(s)
Neoplasias de la Mama/terapia , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Nectinas/genética , Simplexvirus/genética , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Chlorocebus aethiops , Femenino , Regulación Neoplásica de la Expresión Génica , Vectores Genéticos/genética , Vectores Genéticos/uso terapéutico , Humanos , Células MCF-7 , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Unión Proteica/genética , Células Vero
4.
Mol Ther Oncol ; 32(1): 200761, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38596286

RESUMEN

Oncolytic herpes simplex viruses (oHSVs) have emerged as leading cancer therapeutic agents. Effective oHSV virotherapy may ultimately require both intratumoral and systemic vector administration to target the primary tumor and distant metastases. An attractive approach to enhancing oHSV tumor specificity is engineering the virus envelope glycoproteins for selective recognition of and infection via tumor-specific cell surface proteins. We previously demonstrated that oHSVs could be retargeted to EGFR-expressing cells by the incorporation of a single-chain antibody (scFv) at the N terminus of glycoprotein D (gD). Here, we compared retargeted oHSVs generated by the insertion of scFv, affibody molecule, or VHH antibody ligands at different positions within the N terminus of gD. When compared to the scFv-directed oHSVs, VHH and affibody molecules mediated enhanced EGFR-specific tumor cell entry, spread and cell killing in vitro, and enabled long-term tumor-specific virus replication following intravenous delivery in vivo. Moreover, oHSVs retargeted via a VHH ligand reduced tumor growth upon intravenous injection and achieved complete tumor destruction after intratumoral injection. Systemic oHSV delivery is important for the treatment of metastatic disease, and our enhancements in targeted oHSV design are a critical step in creating an effective tumor-specific oHSVs for safe administration via the bloodstream.

6.
Mol Ther Methods Clin Dev ; 30: 208-220, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37519407

RESUMEN

Transductional targeting of herpes simplex virus (HSV)-based gene therapy vectors offers the potential for improved tissue-specific delivery and can be achieved by modification of the viral entry machinery to incorporate ligands that bind the desired cell surface proteins. The interaction of nerve growth factor (NGF) with tropomyosin receptor kinase A (TrkA) is essential for survival of sensory neurons during development and is involved in chronic pain signaling. We targeted HSV infection to TrkA-bearing cells by replacing the signal peptide and HVEM binding domain of glycoprotein D (gD) with pre-pro-NGF. This TrkA-targeted virus (KNGF) infected cells via both nectin-1 and TrkA. However, infection through TrkA was inefficient, prompting a genetic search for KNGF mutants showing enhanced infection following repeat passage on TrkA-expressing cells. These studies revealed unique point mutations in envelope glycoprotein gH and in UL24, a factor absent from mature particles. Together these mutations rescued efficient infection of TrkA-expressing cells, including neurons, and facilitated the production of a completely retargeted KNGF derivative. These studies provide insight into HSV vector improvements that will allow production of replication-defective TrkA-targeted HSV for delivery to the peripheral nervous system and may be applied to other retargeted vector studies in the central nervous system.

7.
Curr Opin Struct Biol ; 72: 39-45, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34461592

RESUMEN

The use of theory and simulation in undergraduate education in biochemistry, molecular biology, and structural biology is now common, but the skills students need and the curriculum instructors have to train their students are evolving. The global pandemic and the immediate switch to remote instruction forced instructors to reconsider how they can use computation to teach concepts previously approached with other instructional methods. In this review, we survey some of the curricula, materials, and resources for instructors who want to include theory, simulation, and computation in the undergraduate curriculum. There has been a notable progression from teaching students to use discipline-specific computational tools to developing interactive computational tools that promote active learning to having students write code themselves, such that they view computation as another tool for solving problems. We are moving toward a future where computational skills, including programming, data analysis, visualization, and simulation, will no longer be considered an optional bonus for students but a required skill for the 21st century STEM (Science, Technology, Engineering, and Mathematics) workforce; therefore, all physical and life science students should learn to program in the undergraduate curriculum.


Asunto(s)
Curriculum , Estudiantes , Bioquímica , Biología , Humanos , Biología Molecular
8.
Mol Ther Oncolytics ; 22: 444-453, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34553031

RESUMEN

Oncolytic herpes simplex viruses (oHSVs) have demonstrated efficient lytic replication in human glioblastoma tumors using immunodeficient mouse models, but early-phase clinical trials have reported few complete responses. Potential reasons for the lack of efficacy are limited vector potency and the suppressive glioma tumor microenvironment (TME). Here we compare the oncolytic activity of two HSV-1 vectors, a KOS-strain derivative KG4:T124 and an F-strain derivative rQNestin34.5v.1, in the CT2A and GL261N4 murine syngeneic glioma models. rQNestin34.5v1 generally demonstrated a greater in vivo viral burden compared to KG4:T124. However, both vectors were rapidly cleared from CT2A tumors, while virus remained ensconced in GL261N4 tumors. Immunological evaluation revealed that the two vectors induced similar changes in immune cell recruitment to either tumor type at 2 days after infection. However, at 7 days after infection, the CT2A microenvironment displayed the phenotype of an untreated tumor, while GL261N4 tumors exhibited macrophage and CD4+/CD8+ T cell accumulation. Furthermore, the CT2A model was completely resistant to virus therapy, while in the GL261N4 model rQNestin34.5v1 treatment resulted in enhanced macrophage recruitment, impaired tumor progression, and long-term survival of a few animals. We conclude that prolonged intratumoral viral presence correlates with immune cell recruitment, and both are needed to enhance anti-tumor immunity.

9.
RSC Med Chem ; 12(2): 203-212, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-34046609

RESUMEN

Glucocorticoids (GCs) are widely used, potent anti-inflammatory and chemotherapeutic drugs. They work by binding to the glucocorticoid receptor (GR), a ligand-activated transcription factor, inducing translocation to the nucleus and regulation of genes that influence a variety of cellular activities. Despite being effective for a broad number of conditions, GC use is limited by severe side effects. To identify ligands that are more selective, we synthesized pairs of regioisomers in the pyrazole ring that probe the expanded binding pocket of GR opened by deacylcortivazol (DAC). Using an Ullmann-type reaction, a deacylcortivazol-like (DAC-like) backbone was modified with five pendant groups at the 1'- and 2'-positions of the pyrazole ring, yielding 9 ligands. Most of the compounds were cytotoxic to leukemia cells, and all required GR expression. Both aliphatic and other aromatic groups substituted at the 2'-position produced ligands with GC activity, with phenyl and 4-fluorophenyl substitutions exhibiting high cellular affinity for the receptor and >5× greater potency than dexamethasone, a commonly used strong GC. Surprisingly, phenyl substitution at the 1'-position produced a high-affinity ligand with ∼10× greater potency than dexamethasone, despite little apparent room in the expanded binding pocket to accommodate 1'-modifications. Other 1'-modifications, however, were markedly less potent. The potency of the 2'-substituted and 1'-substituted DAC-like compounds tracked linearly with cellular affinity but had different slopes, suggesting a different mode of interaction with GR. These data provide evidence that the expanded binding pocket opened by deacylcortivazol is more accommodating that expected, allowing development of new, and possibly selective, GCs by substitution within the pyrazole ring.

10.
Methods Mol Biol ; 2060: 73-90, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31617173

RESUMEN

Virus vectors have been employed as gene transfer vehicles for various preclinical and clinical gene therapy applications and with the approval of Glybera (Alipogene tiparvovec) as the first gene therapy product as a standard medical treatment (Yla-Herttuala, Mol Ther 20:1831-1832, 2013), gene therapy has reached the status of being a part of standard patient care. Replication-competent herpes simplex virus (HSV) vectors that replicate specifically in actively dividing tumor cells have been used in Phase I-III human trials in patients with glioblastoma multiforme (GBM), a fatal form of brain cancer, and in malignant melanoma. In fact, Imlygic® (T-VEC, Talimogene laherparepvec, formerly known as OncoVex GM-CSF), displayed efficacy in a recent Phase-III trial when compared to standard GM-CSF treatment alone (Andtbacka et al., J Clin Oncol 31:sLBA9008, 2013), and has since become the first FDA-approved viral gene therapy product used in standard patient care (October 2015) (Pol et al., Oncoimmunology 5:e1115641, 2016). Moreover, increased efficacy was observed when Imlygic® was combined with checkpoint inhibitory antibodies as a frontline therapy for malignant melanoma (Ribas et al., Cell 170:1109-1119.e1110, 2017; Dummer et al., Cancer Immunol Immunother 66:683-695, 2017). In addition to the replication-competent oncolytic HSV vectors like T-VEC, replication-defective HSV vectors have been employed in Phase I-II human trials and have been explored as delivery vehicles for disorders such as pain, neuropathy and other neurodegenerative conditions. Research during the last decade on the development of HSV vectors has resulted in the engineering of recombinant vectors that are completely replication defective, nontoxic, and capable of long-term transgene expression in neurons. This chapter describes methods for the construction of recombinant genomic HSV vectors based on the HSV-1 replication-defective vector backbones, steps in their purification, and their small-scale production for use in cell culture experiments as well as preclinical animal studies.


Asunto(s)
Terapia Genética , Vectores Genéticos , Herpesvirus Humano 1 , Animales , Chlorocebus aethiops , Vectores Genéticos/genética , Vectores Genéticos/aislamiento & purificación , Vectores Genéticos/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/crecimiento & desarrollo , Herpesvirus Humano 1/aislamiento & purificación , Humanos , Transgenes , Células Vero
11.
Mol Ther Methods Clin Dev ; 16: 145-154, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32042851

RESUMEN

Effective oncolytic virotherapy may require systemic delivery, tumor targeting, and resistance to virus-neutralizing (VN) antibodies. Since herpes simplex virus (HSV) glycoprotein D (gD) is the viral attachment/entry protein and predominant VN target, we examined the impact of gD retargeting alone and in combination with alterations in dominant VN epitopes on virus susceptibility to VN antibodies. We compared the binding of a panel of anti-gD monoclonal antibodies (mAbs) that mimic antibody specificities in human HSV-immune sera to the purified ectodomains of wild-type and retargeted gD, revealing the retention of two prominent epitopes. Substitution of a key residue in each epitope, separately and together, revealed that both substitutions (1) blocked retargeted gD recognition by mAbs to the respective epitopes, and, in combination, caused a global reduction in mAb binding; (2) protected against fusion inhibition by VN mAbs reactive with each epitope in virus-free cell-cell fusion assays; and (3) increased the resistance of retargeted HSV-1 to these VN mAbs. Although the combined modifications of retargeted gD allowed bona fide retargeting, incorporation into virions was partially compromised. Our results indicate that stacking of epitope mutations can additively block retargeted gD recognition by VN antibodies but also that improvements in gD incorporation into virus particles may be required.

12.
bioRxiv ; 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33299989

RESUMEN

Three-dimensional structures of SARS-CoV-2 and other coronaviral proteins archived in the Protein Data Bank were used to analyze viral proteome evolution during the first six months of the COVID-19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48,000 viral proteome sequences showed how each one of the 29 viral study proteins have undergone amino acid changes. Structural models computed for every unique sequence variant revealed that most substitutions map to protein surfaces and boundary layers with a minority affecting hydrophobic cores. Conservative changes were observed more frequently in cores versus boundary layers/surfaces. Active sites and protein-protein interfaces showed modest numbers of substitutions. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi-Gaussian distribution. Detailed results are presented for six drug discovery targets and four structural proteins comprising the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and functional interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure-based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance.

13.
Biochem Mol Biol Educ ; 47(5): 498-505, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31381264

RESUMEN

Course-based Undergraduate Research Experiences (CUREs) can be a very effective means to introduce a large number of students to research. CUREs are often an extension of the instructor's research, which may make them difficult to replicate in other settings because of differences in expertise or facilities. The BASIL (Biochemistry Authentic Scientific Inquiry Lab) CURE has evolved over the past 4 years as faculty members with different backgrounds, facilities, and campus cultures have all contributed to a robust curriculum focusing on enzyme function prediction that is suitable for implementation in a wide variety of academic settings. © 2019 International Union of Biochemistry and Molecular Biology, 47(5):498-505, 2019.


Asunto(s)
Bioquímica/educación , Proteínas/química , Investigación , Curriculum , Docentes , Humanos , Aprendizaje , Estudiantes , Universidades
14.
BMC Med Imaging ; 8: 11, 2008 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-18534031

RESUMEN

BACKGROUND: Breast cancers that overexpress the human epidermal growth factor receptor 2 (HER2) are eligible for effective biologically targeted therapies, such as trastuzumab. However, accurately determining HER2 overexpression, especially in immunohistochemically equivocal cases, remains a challenge. Manual analysis of HER2 expression is dependent on the assessment of membrane staining as well as comparisons with positive controls. In spite of the strides that have been made to standardize the assessment process, intra- and inter-observer discrepancies in scoring is not uncommon. In this manuscript we describe a pathologist assisted, computer-based continuous scoring approach for increasing the precision and reproducibility of assessing imaged breast tissue specimens. METHODS: Computer-assisted analysis on HER2 IHC is compared with manual scoring and fluorescence in situ hybridization results on a test set of 99 digitally imaged breast cancer cases enriched with equivocally scored (2+) cases. Image features are generated based on the staining profile of the positive control tissue and pixels delineated by a newly developed Membrane Isolation Algorithm. Evaluation of results was performed using Receiver Operator Characteristic (ROC) analysis. RESULTS: A computer-aided diagnostic approach has been developed using a membrane isolation algorithm and quantitative use of positive immunostaining controls. By incorporating internal positive controls into feature analysis a greater Area Under the Curve (AUC) in ROC analysis was achieved than feature analysis without positive controls. Evaluation of HER2 immunostaining that utilized membrane pixels, controls, and percent area stained showed significantly greater AUC than manual scoring, and significantly less false positive rate when used to evaluate immunohistochemically equivocal cases. CONCLUSION: It has been shown that by incorporating both a membrane isolation algorithm and analysis of known positive controls a computer-assisted diagnostic algorithm was developed that can reproducibly score HER2 status in IHC stained clinical breast cancer specimens. For equivocal scoring cases, this approach performed better than standard manual evaluation as assessed by ROC analysis in our test samples. Finally, there exists potential for utilizing image-analysis techniques for improving HER2 scoring at the immunohistochemically equivocal range.


Asunto(s)
Algoritmos , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Interpretación de Imagen Asistida por Computador/métodos , Inmunohistoquímica/métodos , Receptor ErbB-2/metabolismo , Biomarcadores de Tumor/análisis , Femenino , Humanos , Técnicas de Sonda Molecular , Proteínas de Neoplasias/análisis , Proteínas de Neoplasias/metabolismo , Receptor ErbB-2/análisis , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
Curr Opin Virol ; 21: 93-101, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27614209

RESUMEN

Gene therapy applications depend on vector delivery and gene expression in the appropriate target cell. Vector infection relies on the distribution of natural virus receptors that may either not be present on the desired target cell or distributed in a manner to give off-target gene expression. Some viruses display a very limited host range, while others, including herpes simplex virus (HSV), can infect almost every cell within the human body. It is often an advantage to retarget virus infectivity to achieve selective target cell infection. Retargeting can be achieved by (i) the inclusion of glycoproteins from other viruses that have a different host-range, (ii) modification of existing viral glycoproteins or coat proteins to incorporate peptide ligands or single-chain antibodies (scFvs) that bind to the desired receptor, or (iii) employing soluble adapters that recognize both the virus and a specific receptor on the target cell. This review summarizes efforts to target HSV using these three strategies.


Asunto(s)
Portadores de Fármacos/farmacocinética , Terapia Genética/métodos , Vectores Genéticos/farmacocinética , Simplexvirus/fisiología , Tropismo Viral , Humanos , Simplexvirus/genética
17.
Nurs Leadersh (Tor Ont) ; 21(2): 63-75, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18536546

RESUMEN

As care needs continue to increase in complexity in inpatient settings, and nurses' scope of practice evolves to keep pace with these changing demands, it is imperative that nurse leaders ensure nursing care delivery models are well aligned to current realities. Older, traditional models of nursing service may no longer foster safe, effective and efficient care or contribute to job satisfaction and high-quality work life for nurses. This paper describes the Autonomous-Collaborative Care Model and its application in a continuing care setting. This innovative and flexible model fosters autonomy and accountability in nursing practice, reduces duplication in the execution of nursing tasks, enhances effective communication and outlines mechanisms for collaboration among various members of the nursing and interprofessional teams. The model has positioned the authors' organization to meet impending shortages of nursing personnel by ensuring that the right category of nurse is assigned to the appropriate patient, by reducing non-nursing work and by supporting nurses' autonomy to practise to their full scope.


Asunto(s)
Conducta Cooperativa , Liderazgo , Enfermeras Administradoras , Atención de Enfermería/organización & administración , Personal de Enfermería/organización & administración , Autonomía Profesional , Práctica Profesional , Canadá , Humanos , Modelos de Enfermería , Rol de la Enfermera
18.
Med Image Comput Comput Assist Interv ; 10(Pt 2): 287-94, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18044580

RESUMEN

Motivated by the current limitations of automated quantitative image analysis in discriminating among intracellular immunohistochemical (IHC) staining patterns, this paper presents a two-fold approach for IHC characterization that utilizes both the protein stain information and the surrounding tissue architecture. Through the use of a color unmixing algorithm, stained tissue sections are automatically decomposed into the IHC stain, which visualizes the target protein, and the counterstain which provides an objective indication of the underlying histologic architecture. Feature measures are subsequently extracted from both staining planes. In order to characterize the IHC expression pattern, this approach exploits the use of a non-traditional feature based on textons. Novel biologically motivated filter banks are introduced in order to derive texture signatures for different IHC staining patterns. Systematic experiments using this approach were used to classify breast cancer tissue microarrays which had been previously prepared using immuno-targeted nuclear, cytoplasmic, and membrane stains.


Asunto(s)
Colorimetría/métodos , Perfilación de la Expresión Génica/métodos , Interpretación de Imagen Asistida por Computador/métodos , Inmunohistoquímica/métodos , Microscopía/métodos , Animales , Humanos , Coloración y Etiquetado/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA