Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Biochem Biophys Res Commun ; 696: 149422, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38183795

RESUMEN

Identification and functional analysis of key genes regulated by the circadian clock system will provide a comprehensive understanding of the underlying mechanisms through which circadian clock disruption impairs the health of living organisms. The initial phase involved bioinformatics analysis, drawing insights from three RNA-seq datasets (GSE184303, GSE114400, and GSE199061) derived from wild-type mouse liver tissues, which encompassed six distinct time points across a day. As expected, 536 overlapping genes exhibiting rhythmic expression patterns were identified. By intersecting these genes with differentially expressed genes (DEGs) originating from liver RNA-seq data at two representative time points (circadian time, CT: CT2 and CT14) in global Bmal1 knockout mice (Bmal1-/-), hepatocyte-specific Bmal1 knockout mice (L-Bmal1-/-), and their corresponding control groups, 80 genes potentially regulated by BMAL1 (referred to as BMAL1-regulated genes, BRGs) were identified. These genes were significantly enriched in glycolipid metabolism, immune response, and tumorigenesis pathways. Eight BRGs (Nr1d1, Cry1, Gys2, Homer2, Serpina6, Slc2a2, Nmrk1, and Upp2) were selected to validate their expression patterns in both control and L-Bmal1-/- mice livers over 24 h. Real-time quantitative polymerase chain reaction results demonstrated a comprehensive loss of rhythmic expression patterns in the eight selected BRGs in L-Bmal1-/- mice, in contrast to the discernible rhythmic patterns observed in the livers of control mice. Additionally, significant reductions in the expression levels of these selected BRGs, excluding Cry1, were also observed in L-Bmal1-/- mice livers. Chromatin immunoprecipitation (ChIP)-seq (GSE13505 and GSE39860) and JASPAR analyses validated the rhythmic binding of BMAL1 to the promoter and intron regions of these genes. Moreover, the progression of conditions, from basic steatosis to non-alcoholic fatty liver disease, and eventual malignancy, demonstrated a continuous gradual decline in Bmal1 transcripts in the human liver. Combining the aforementioned BRGs with DEGs derived from human liver cancer datasets identified Gys2 and Upp2 as potential node genes bridging the circadian clock system and hepatocellular carcinoma (HCC). In addition, CCK8 and wound healing assays demonstrated that the overexpression of human GYS2 and UPP2 proteins inhibited the proliferation and migration of HepG2 cells, accompanied by elevated expression of p53, a tumor suppressor protein. In summary, this study systematically identified rhythmic genes in the mouse liver, and a subset of circadian genes potentially regulated by BMAL1. Two circadian genes, Gys2 and Upp2, have been proposed and validated as potential candidates for advancing the prevention and treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Relojes Circadianos , Neoplasias Hepáticas , Animales , Humanos , Ratones , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Carcinoma Hepatocelular/patología , Relojes Circadianos/genética , Ritmo Circadiano/genética , Proteínas CLOCK/genética , Regulación de la Expresión Génica , Proteínas de Andamiaje Homer/metabolismo , Hígado/metabolismo , Neoplasias Hepáticas/patología , Ratones Noqueados , Uridina Fosforilasa/metabolismo , Glucógeno Sintasa/metabolismo
2.
Plant Biotechnol J ; 22(1): 66-81, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38153293

RESUMEN

Rye (Secale cereale), a valuable relative of wheat, contains abundant powdery mildew resistance (Pm) genes. Using physical mapping, transcriptome sequencing, barley stripe mosaic virus-induced gene silencing, ethyl methane sulfonate mutagenesis, and stable transformation, we isolated and validated two coiled-coil, nucleotide-binding site and leucine-rich repeat (CC-NBS-LRR) alleles, PmTR1 and PmTR3, located on rye chromosome 6RS from different triticale lines. PmTR1 confers age-related resistance starting from the three-leaf stage, whereas its allele, PmTR3, confers typical all-stage resistance, which may be associated with their differential gene expression patterns. Overexpression in Nicotiana benthamiana showed that the CC, CC-NBS, and CC-LRR fragments of PMTR1 induce cell death, whereas in PMTR3 the CC and full-length fragments perform this function. Luciferase complementation imaging and pull-down assays revealed distinct interaction activities between the CC and NBS fragments. Our study elucidates two novel rye-derived Pm genes and their derivative germplasm resources and provides novel insights into the mechanism of age-related resistance, which can aid the improvement of resistance against wheat powdery mildew.


Asunto(s)
Ascomicetos , Secale , Secale/genética , Resistencia a la Enfermedad/genética , Triticum/genética , Proteínas Repetidas Ricas en Leucina , Ascomicetos/fisiología , Nucleótidos , Cromosomas de las Plantas/genética , Sitios de Unión , Enfermedades de las Plantas/genética
3.
Mol Breed ; 44(4): 28, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38545461

RESUMEN

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a severe disease that affects the yield and quality of wheat. Popularization of resistant cultivars in production is the preferred strategy to control this disease. In the present study, the Chinese wheat breeding line Jimai 809 showed excellent agronomic performance and high resistance to powdery mildew at the whole growth stage. To dissect the genetic basis for this resistance, Jimai 809 was crossed with the susceptible wheat cultivar Junda 159 to produce segregation populations. Genetic analysis showed that a single dominant gene, temporarily designated PmJM809, conferred the resistance to different Bgt isolates. PmJM809 was then mapped on the chromosome arm 2BL and flanked by the markers CISSR02g-1 and CIT02g-13 with genetic distances 0.4 and 0.8 cM, respectively, corresponding to a physical interval of 704.12-708.24 Mb. PmJM809 differed from the reported Pm genes on chromosome arm 2BL in origin, resistance spectrum, physical position and/or genetic diversity of the mapping interval, also suggesting PmJM809 was located on a complex interval with multiple resistance genes. To analyze and screen the candidate gene(s) of PmJM809, six genes related to disease resistance in the candidate interval were evaluated their expression patterns using an additional set of wheat samples and time-course analysis post-inoculation of the Bgt isolate E09. As a result, four genes were speculated as the key candidate or regulatory genes. Considering its comprehensive agronomic traits and resistance findings, PmJM809 was expected to be a valuable gene resource in wheat disease resistance breeding. To efficiently transfer PmJM809 into different genetic backgrounds, 13 of 19 closely linked markers were confirmed to be suitable for marker-assisted selection. Using these markers, a series of wheat breeding lines with harmonious disease resistance and agronomic performance were selected from the crosses of Jimai 809 and several susceptible cultivars. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01467-8.

4.
Plant Dis ; 108(6): 1670-1681, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38173259

RESUMEN

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a serious threat to wheat (Triticum aestivum L.) production. Narrow genetic basis of common wheat boosted the demand for diversified donors against powdery mildew. Aegilops tauschii Coss (2n = 2x = DD) and emmer wheat (2n = 4x = AABB), as the ancestor species of common wheat, are important gene donors for genetic improvement of common wheat. In this study, a total of 71 Ae. tauschii and 161 emmer wheat accessions were first evaluated for their powdery mildew resistance using the Bgt isolate E09. Thirty-three Ae. tauschii (46.5%) and 108 emmer wheat accessions (67.1%) were resistant. Then, all these accessions were tested by the diagnostic markers for 21 known Pm genes. The results showed that Pm2 alleles were detected in all the 71 Ae. tauschii and only Pm4 alleles were detected in 20 of 161 emmer wheat accessions. After haplotype analysis, we identified four Pm4 alleles (Pm4a, Pm4b, Pm4d, and Pm4f) in the emmer wheat accessions and three Pm2 alleles (Pm2d, Pm2e, and Pm2g) in the Ae. tauschii. Further resistance spectrum analysis indicated that these resistance accessions displayed different resistance reactions to different Bgt isolates, implying they may have other Pm genes apart from Pm2 and/or Pm4 alleles. Notably, a new Pm2 allele, Pm2S, was identified in Ae. tauschii, which contained a 64-bp deletion in the first exon and formed a new termination site at the 513th triplet of the shifted reading frame compared with reported Pm2 alleles. The phylogenetic tree of Pm2S showed that the kinship of Pm2S was close to Pm2h. To efficiently and accurately detect Pm2S and distinguish with other Pm2 alleles in Ae. tauschii background, a diagnostic marker, YTU-QS-3, was developed, and its effectiveness was verified. This study provided valuable Pm alleles and enriched the genetic diversity of the powdery mildew resistance in wheat improvement.


Asunto(s)
Aegilops , Ascomicetos , Resistencia a la Enfermedad , Enfermedades de las Plantas , Triticum , Triticum/genética , Triticum/microbiología , Triticum/inmunología , Ascomicetos/fisiología , Ascomicetos/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Aegilops/genética , Aegilops/microbiología , Genes de Plantas/genética , Alelos , Haplotipos
5.
Plant Dis ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853337

RESUMEN

Wheat (Triticum aestivum L.) is one of the most important crops worldwide. Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is a destructive disease threatening wheat yield and quality. The utilization of resistant genes and cultivars is considered the most economical, environmentally-friendly, and effective method to control powdery mildew. Wheat breeding line Jingzi 102 was highly resistant to powdery mildew at both seedling and adult plant stages. Genetic analysis of F1, F2, and F2:3 populations of "Jingzi 102 × Shixin 828" showed that the resistance of Jingzi 102 against powdery mildew isolate E09 at the seedling stage was controlled by a single dominant gene, temporarily designated PmJZ. Using bulked segregant RNA-Seq combined with molecular markers analysis, PmJZ was located on the long arm of chromosome 2B and flanked by markers BJK695-1 and CIT02g-20 with the genetic distances of 1.2 and 0.5 cM, respectively, corresponding to the bread wheat genome of Chinese Spring (IWGSC RefSeq v2.1) 703.8-707.6 Mb. PmJZ is most likely different from the documented Pm genes on chromosome 2BL based on their physical positions, molecular markers analysis, and resistance spectrum. Based on the gene annotation information, five genes related to disease resistance could be considered as the candidate genes of PmJZ. To accelerate the application of PmJZ, the flanking markers BJK695-1 and CIT02g-20 can serve for marker-assisted selection of PmJZ in wheat disease resistance breeding.

6.
Theor Appl Genet ; 136(9): 179, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37548696

RESUMEN

KEY MESSAGE: Novel wheat-rye 6RS small fragment translocation lines with powdery mildew resistance were developed, and the resistance gene PmW6RS was physically mapped onto 6RS-0.58-0.66-bin corresponding to 18.38 Mb in Weining rye. Rye (Secale cereale L., RR) contains valuable genes for wheat improvement. However, most of the rye resistance genes have not been successfully used in wheat cultivars. Identification of new rye resistance genes and transfer of these genes to wheat by developing small fragment translocation lines will make these genes more usable for wheat breeding. In this study, a broad-spectrum powdery mildew resistance gene PmW6RS was localized on rye chromosome arm 6RS using a new set of wheat-rye disomic and telosomic addition lines. To further study and use PmW6RS, 164 wheat-rye 6RS translocation lines were developed by 60Coγ-ray irradiation. Seedling and adult stage powdery mildew resistance analysis showed that 106 of the translocation lines were resistant. A physical map of 6RS was constructed using the 6RS translocation and deletion lines, and PmW6RS was localized in the 6RS-0.58-0.66-bin, flanked by markers X6RS-3 and X6RS-10 corresponding to the physical interval of 50.23-68.61 Mb in Weining rye genome. A total of 23 resistance-related genes were annotated. Nine markers co-segregate with the 6RS-0.58-0.66-bin, which can be used to rapidly trace the 6RS fragment carrying PmW6RS. Small fragment translocation lines with powdery mildew resistance were backcrossed with wheat cultivars, and 39 agronomically acceptable homozygous 6RS small fragment translocation lines were obtained. In conclusion, this study not only provides novel gene source and germplasms for wheat resistance breeding, but also laid a solid foundation for cloning of PmW6RS.


Asunto(s)
Ascomicetos , Secale , Secale/genética , Triticum/genética , Fitomejoramiento , Resistencia a la Enfermedad/genética , Translocación Genética , Enfermedades de las Plantas/genética
7.
Plant Dis ; 107(2): 450-456, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35815965

RESUMEN

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), poses a severe threat to wheat yield and quality worldwide. Rapid identification and the accurate transference of effective resistance genes are important to the development of resistant cultivars and the sustainable control of this disease. In the present study, the wheat line AL11 exhibited high levels of resistance to powdery mildew at both the seedling and adult plant stages. Genetic analysis of the AL11 × 'Shixin 733' mapping population revealed that its resistance was controlled by a single dominant gene, tentatively designated PmAL11. Using bulked segregant RNA-Seq and molecular marker analysis, PmAL11 was mapped to the Pm5 locus on chromosome 7B where it cosegregated with the functional marker Pm5e-KASP. Sequence alignment analysis revealed that the Pm5e-homologous sequence in AL11 was identical to the reported recessive gene Pm5e in wheat landrace 'Fuzhuang 30'. It appears that PmAL11 was most probably Pm5e, but it was mediated by a dominant inheritance pattern, so it should provide a valuable resistance resource for both genetic study and wheat breeding. To efficiently use and trace PmAL11 in breeding, a new kompetitive allele-specific PCR marker AL11-K2488 that cosegregated with this gene was developed and confirmed to be applicable in the different wheat backgrounds, thus promoting its use in the marker-assisted selection of PmAL11.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Mapeo Cromosómico , Genes Dominantes , Marcadores Genéticos/genética , Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Enfermedades de las Plantas/genética , Erysiphe/genética
8.
Plant Dis ; 107(8): 2453-2459, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36724028

RESUMEN

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a devastating disease that seriously threatens wheat yield and quality. To control this disease, host resistance is the preferred measure. However, wheat breeding is a complex process with elusive exchange and recombination of the traits from their parents. Increased resistance often leads to a decline in other key traits, such as yield and quality. Developing breakthrough germplasms with harmonious powdery mildew resistance and other key breeding traits is attractive in wheat breeding. In this study, we developed an ideal wheat breeding line AL46 that pyramided its hexaploid triticale parent-derived desirable yield traits and its wheat parent-derived powdery mildew resistance gene Pm2. Sequential genomic in situ hybridization (GISH), multicolor GISH, multicolor fluorescence in situ hybridization, and molecular marker analyses revealed that AL46 was a wheat-rye T1RS·1BL translocation line. Genetic analysis combined with function marker detection and sequence alignment were used to confirm that AL46 carried the Pm2 gene. Then, we evaluated the powdery mildew resistance and comprehensive traits of AL46, and just as we designed, AL46 showed harmonious powdery mildew resistance with some key breeding traits. This study not only developed an ideal wheat germplasm resource but also provided a successful example for pyramiding breeding, which could be a promising direction for wheat improvement in the future.


Asunto(s)
Secale , Triticum , Triticum/genética , Hibridación Fluorescente in Situ , Secale/genética , Resistencia a la Enfermedad/genética , Fitomejoramiento , Erysiphe/genética
9.
Plant Dis ; 107(12): 3801-3809, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37272049

RESUMEN

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive disease worldwide. Host resistance is the preferred method for limiting the disease epidemic, protecting the environment, and minimizing economic losses. In the present study, the reactions to powdery mildew for a collection of 600 wheat cultivars and breeding lines from different wheat-growing regions were tested using the Bgt isolate E09. Next, 116 resistant genotypes were identified and then crossed with susceptible wheat cultivars/lines to produce segregating populations for genetic analysis. Among them, 87, 19, and 10 genotypes displayed single, dual, and multiple genic inheritance, respectively. To identify the Pm gene(s) in those resistant genotypes, 16 molecular markers for 13 documented Pm genes were used to test the resistant and susceptible parents and their segregating populations. Of the 87 wheat genotypes that fitted the monogenic inheritance, 75 carried the Pm2a allele. Three, two, one, and two genotypes carried Pm21, Pm6, Pm4, and the recessive genes pm6 and pm42, respectively. Four genotypes did not carry any of the tested genes, suggesting that they might have other uncharacterized or new genes. The other 29 wheat cultivars/lines carried two or more of the tested Pm genes and/or other untested genes, including Pm2, Pm5, Pm6, and/or pm42. It was obvious that Pm2 was widely used in wheat production, whereas Pm1, Pm24, Pm33, Pm34, Pm35, Pm45, and Pm47 were not detected in any of these resistant wheat genotypes. This study clarified the genetic basis of the powdery mildew resistance of these wheat cultivars/lines to provide information for their rational utilization in different wheat-growing regions. Moreover, some wheat genotypes which may have novel Pm gene(s) were mined to enrich the diversity of resistance source.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Erysiphe/genética , Alelos
10.
Plant Dis ; 107(7): 2104-2111, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36541876

RESUMEN

Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is a serious fungal wheat disease of wheat worldwide. Host resistance is considered to be the most environmentally friendly and efficient approach against this disease. Wheat breeding line GR18-1 showed resistance to powdery mildew at both seedling and adult stages for several years. Genetic analysis indicated that a single dominant gene, tentatively designated as PmGR-18, conferred powdery mildew resistance in GR18-1. Bulked segregant analysis and marker analysis showed that PmGR-18 was located in the Pm4 interval on chromosome arm 2AL and was flanked by the markers Xwgrc763 and Xwgrc872, respectively, with genetic distances of 0.5 and 1.0 cM corresponding to a physical interval of 1.13 Mb based on the Chinese Spring reference genome sequence v2.1. Using homology-based cloning and Sanger sequencing, we found that the sequence of PmGR-18 was totally consistent with that of Pm4d. qRT-PCR analysis showed that the expression levels of two splicing variants Pm4d_V1 and Pm4d_V2 in GR18-1 were significantly upregulated after inoculating with Bgt isolate E09, and the level of Pm4d_V2 was significantly lower than that of Pm4d_V1 at most of the time points, suggesting a different resistance pattern may be involved in the genotype. To facilitate the transfer of PmGR-18 in marker-assisted selection (MAS) breeding, the flanked markers Xwgrc763 and Xwgrc872 and the functional marker JS717/JS718 were tested and confirmed to enable the tracking of PmGR-18 when it transferred into those susceptible cultivars.


Asunto(s)
Resistencia a la Enfermedad , Triticum , Triticum/genética , Triticum/microbiología , Mapeo Cromosómico , Marcadores Genéticos , Resistencia a la Enfermedad/genética , Alelos , Fitomejoramiento , Erysiphe/genética
11.
BMC Plant Biol ; 22(1): 568, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36471256

RESUMEN

BACKGROUND: Plant height (PH), spike length (SL) and spike compactness (SCN) are important agronomic traits in wheat due to their strong correlations with lodging and yield. Thus, dissection of their genetic basis is essential for the improvement of plant architecture and yield potential in wheat breeding. The objective of this study was to map quantitative trait loci (QTL) for PH, SL and SCN in a recombinant inbred line (RIL) population derived from the cross 'PuBing3228 × Gao8901' (PG-RIL) and to evaluate the potential values of these QTL to improve yield. RESULTS: In the current study, Five, six and ten stable QTL for PH, SL, and SCN, respectively, were identified in at least two individual environments. Five major QTL QPh.cas-5A.3, QPh.cas-6A, QSl.cas-6B.2, QScn.cas-2B.2 and QScn.cas-6B explained 5.58-25.68% of the phenotypic variation. Notably, two, three and three novel stable QTL for PH, SL and SCN were identified in this study, which could provide further insights into the genetic factors that shape PH and spike morphology in wheat. Conditional QTL analysis revealed that QTL for SCN were mainly affected by SL. Moreover, a Kompetitive Allele Specific PCR (KASP) marker tightly linked to stable major QTL QPh.cas-5A.3 was developed and verified using the PG-RIL population and a natural population. CONCLUSIONS: Twenty-one stable QTL related to PH, SL, and SCN were identified. These stable QTL and the user-friendly marker KASP8750 will facilitate future studies involving positional cloning and marker-assisted selection in breeding.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Mapeo Cromosómico , Sitios de Carácter Cuantitativo/genética , Fenotipo
12.
Plant Dis ; 106(9): 2433-2440, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35188419

RESUMEN

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a devastating disease of wheat that seriously affects yield and quality worldwide. Because of the extensive growth of wheat cultivars with homogeneous genetic background, exploring novel resistant resources from wheat relatives has become important for increasing the genetic diversity of wheat. Rye (Secale cereale) is a wheat relative possessing abundant resistance genes because of its high variation. Wheat line AL69, resistant to powdery mildew, was developed by crossing, backcrossing, and self-pollination for multiple generations between hexaploid triticale Zhongsi 237 and common wheat cultivar Zimai 17. Through genomic in situ hybridization (GISH) and multicolor fluorescence in situ hybridization (FISH), nondenaturing FISH, multicolor GISH, and selection with specific molecular markers, AL69 was determined to be a wheat-rye 2R (2D) disomic substitution line. Testing with different B. graminis f. sp. tritici isolates and genetic analysis showed that the all-stage resistance (also called seedling resistance) of AL69 was conferred by the cataloged powdery mildew resistance gene Pm4b derived from Zimai 17, and its adult-plant resistance was derived from the alien chromosome 2R of Zhongsi 237, which was found to be different from the previously reported rye-derived Pm genes, including Pm7 on 2RL. In addition, AL69 showed improved spike number per plant, spike length, fertile spikelet number per spike, kernel number per spike, and grain yield per plant compared with its wheat parent Zimai 17. An elite line S251 combining powdery mildew resistance with excellent agronomic performance was selected from the progenies of AL69 and wheat cultivar Jimai 22. Therefore, AL69 has two types of resistance genes to powdery mildew and improved agronomic traits through pyramiding and thus can be used as a promising genetic stock for wheat breeding.


Asunto(s)
Secale , Triticum , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Hibridación Fluorescente in Situ , Fitomejoramiento , Enfermedades de las Plantas/genética , Secale/genética , Triticum/genética
13.
Plant Dis ; 105(12): 3900-3908, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34129353

RESUMEN

Powdery mildew and leaf rust, caused by Blumeria graminis f. sp. tritici and Puccinia triticina, respectively, are widespread diseases of wheat worldwide. The use of resistant cultivars is considered the most economical, environment-friendly, and effective method to control these diseases. In the present study, a collection of 2,978 wheat accessions consisting of 1,394 advanced breeding lines, 1,078 Chinese cultivars, 291 introduced cultivars, 132 lines containing alien chromosomes, and 83 landraces was tested for reactions to powdery mildew and leaf rust. The results indicated that 659 wheat accessions (22.1%) were highly resistant to a widely prevalent B. graminis f. sp. tritici isolate, E09, at the seedling stage, and 390 were consistently resistant to the mixture of B. graminis f. sp. tritici isolates at the adult plant stage. Meanwhile, 63 accessions (2.1%) were highly resistant to leaf rust at the adult plant stage, of which 54 were resistant to a predominant and highly virulent P. triticina race, THTT, at the seedling stage. Notably, 17 accessions were resistant to both powdery mildew and leaf rust. To detect known genes for resistance to powdery mildew and leaf rust, these accessions were tested with gene-specific or tightly linked markers for seven powdery mildew genes (Pm genes; Pm2, Pm4, Pm5, Pm6, Pm8, Pm21, and Pm24) and 10 Lr genes (Lr1, Lr9, Lr10, Lr19, Lr20, Lr24, Lr26, Lr34, Lr37, and Lr46). Of the 659 powdery mildew-resistant accessions, 328 might carry single Pm genes and 191 carry combined Pm genes. Pm2 was detected at the highest frequency of 59.6%, followed by Pm8, Pm6, Pm21, Pm4, and Pm5, whereas Pm24 was not detected. In addition, 139 accessions might contain unknown Pm genes different from those tested in this study. In the 63 accessions resistant to leaf rust, four leaf rust genes (Lr genes; Lr1, Lr10, Lr26, and Lr34) were detected in 41 accessions singly or in combination, whereas six genes (Lr9, Lr19, Lr20, Lr24, Lr37, and Lr46) were not detected. Twenty-two accessions might contain unknown Lr genes different from those tested in this study. This study not only provided important information for rationally distributing resistance genes in wheat breeding programs, but also identified resistant germplasm that might have novel genes to enrich the diversity of resistance sources.


Asunto(s)
Basidiomycota , Triticum , Genes de Plantas , Fitomejoramiento , Enfermedades de las Plantas/genética , Triticum/genética
14.
BMC Genomics ; 21(1): 206, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32131733

RESUMEN

BACKGROUND: Rye (Secale cereale L., 2n = 2x = 14, RR), a relative of common wheat, is a large gene resource pool for wheat improvement. Accurate and convenient identification of the rye chromatin in wheat background will facilitate the transfer and utilization of elite genes derived from rye in wheat breeding. RESULTS: In the present study, five rye cultivars including Imperial, German White, Jingzhouheimai, Baili and Guyuan were sequenced by specific-locus amplified fragment sequencing (SLAF-seq) to develop large-scale rye-specific markers. Based on SLAF-seq and bioinformatics analyses, a total of 404 universal PCR-based and a whole set of Kompetitive allele-specific PCR (KASP) markers specific for the 14 individual rye chromosome arms were developed and validated. Additionally, two KASP markers specific for 1RS and 2RL were successfully applied in the detection of 1RS translocations in a natural population and 2RL chromosome arms in wheat-rye derived progenies that conferred adult resistance to powdery mildew. CONCLUSION: The 404 PCR-based markers and 14 KASP markers specific for the 14 individual rye chromosome arms developed in this study can enrich the marker densities for gene mapping and accelerate the utilization of rye-derived genes in wheat improvement. Especially, the KASP markers achieved high-throughput and accurate detection of rye chromatin in wheat background, thus can be efficiently used in marker-assisted selection (MAS). Besides, the strategy of rye-specific PCR-based markers converting into KASP markers was high-efficient and low-cost, which will facilitate the tracing of alien genes, and can also be referred for other wheat relatives.


Asunto(s)
Cromosomas de las Plantas/genética , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secale/genética , Alelos , Cromatina/genética , Hibridación Fluorescente in Situ , Fitomejoramiento , Reacción en Cadena de la Polimerasa/métodos , Secale/clasificación , Análisis de Secuencia de ADN , Especificidad de la Especie , Translocación Genética
15.
Plant Dis ; 104(1): 260-268, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31644391

RESUMEN

Rye (Secale cereale L.) is an important gene donor for wheat improvement because of its many valuable traits, especially disease resistance. Development of novel wheat-rye translocations with disease resistance can contribute to transferring resistance into common wheat. In a previous study, a wheat-rye T4BL·4RL and T7AS·4RS translocation line (WR41-1) was developed by distant hybridization, and it was speculated that its resistance to powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), was derived from rye based on pedigree analysis. To make accurate use of chromosome 4R in wheat improvement, a set of new 4R translocations involving different arm translocations (e.g., 4RS monosomic, 4RL monosomic, 4RL disomic, 4RS monosomic plus 4RL monosomic, 4RS monosomic plus 4RL disomic, and 4RS disomic plus 4RL disomic translocations) was developed from crosses with common wheat. Those translocations were characterized by genomic in situ hybridization and expressed sequence tag simple sequence repeat marker analysis. To confirm the source of powdery mildew resistance, the translocation plants were tested against Bgt isolate E09. The results indicated that all translocations with 4RL were resistant at all tested growth stages, whereas those with only 4RS translocation or no alien translocation were susceptible. This further indicated that the powdery mildew resistance of WR41-1 was derived from the alien chromosome arm 4RL. To effectively use 4RL resistance in wheat improvement, two competitive allele-specific PCR markers specific for chromosome arm 4RL were developed to detect the alien chromosome in the wheat genome. These new translocation lines with diagnostic markers can efficiently serve as important bridges for wheat improvement.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad , Secale , Triticum , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Secale/genética , Secale/microbiología , Translocación Genética , Triticum/genética , Triticum/microbiología
16.
Plant Dis ; 104(11): 2940-2948, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32897842

RESUMEN

Wheat-rye T1RS·1BL translocations have been widely used worldwide in wheat production for multiple disease resistance and superior yield traits. However, many T1RS·1BL translocations have successively lost their resistance to pathogens due to the coevolution of pathogen virulence with host resistance. Because of the extensive variation in rye (Secale cereale L.) as a naturally cross-pollinating relative of wheat, it still has promise to widen the variation of 1RS and to fully realize its application value in wheat improvement. In the present study, the wheat-rye breeding line R2207 was characterized by comprehensive analyses using genomic in situ hybridization (GISH), multicolor fluorescence in situ hybridization with multiple probes, multicolor GISH, and molecular marker analysis, and then was proven to be a cytogenetically stable wheat-rye T1RS·1BL translocation line. Based on the disease responses to different isolates of powdery mildew and genetic analysis, R2207 appears to possess a novel variation for resistance, which was confirmed to be located on the rye chromosome arm 1RS. Line R2207 also exhibited high levels of resistance to stripe rust at both seedling and adult stages, as well as enhanced agronomic performance, so it has been transferred into a large number of commercial cultivars using an efficient 1RS-specific kompetitive allele specific PCR marker for marker-assisted selection.


Asunto(s)
Secale , Triticum , Cromosomas de las Plantas/genética , Hibridación Fluorescente in Situ , Enfermedades de las Plantas/genética , Secale/genética , Triticum/genética
17.
Theor Appl Genet ; 132(1): 257-272, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30374527

RESUMEN

KEY MESSAGE: A wheat-rye 4R chromosome disomic addition line with resistances to powdery mildew, stripe rust, sharp eyespot and high kernel number per spike was developed and characterized by molecular cytogenetic method as novel resistant germplasm. Rye (Secale cereale L.), a close relative of common wheat, is an important and valuable gene donor with multiple disease resistance for wheat improvement. However, resistance genes derived from rye have successively lost resistance to pathogens due to the coevolution of pathogen virulence and host resistance. Development and identification of new effective resistance gene sources from rye therefore are of special importance and urgency. In the present study, a wheat-rye line WR35 was produced through distant hybridization, embryo rescue culture, chromosome doubling and backcrossing. WR35 was then proven to be a new wheat-rye 4R disomic addition line using sequential GISH (genomic in situ hybridization), mc-FISH (multicolor fluorescence in situ hybridization) and ND-FISH (non-denaturing FISH) with multiple probes, mc-GISH (multicolor GISH), rye chromosome arm-specific marker analysis and SLAF-seq (specific-locus amplified fragment sequencing) analysis. At the adult stage, WR35 exhibited high levels of resistance to the powdery mildew (Blumeria graminis f. sp. tritici, Bgt) and stripe rust (Puccinia striiformis f. sp. tritici, Pst) pathogens prevalent in China, and a highly virulent isolate of Rhizoctonia cerealis, the cause of wheat sharp eyespot. At the seedling stage, it was highly resistant to 22 of 23 Bgt isolates and four Pst races. Based on its disease responses to different pathogen isolates, WR35 may possess resistance gene(s) for powdery mildew, stripe rust and sharp eyespot, which differed from the known resistance genes from rye. In addition, WR35 was cytologically stable and produced high kernel number per spike. Therefore, WR35 with multi-disease resistances and desirable agronomic traits should serve as a promising bridging parent for wheat chromosome engineering breeding.


Asunto(s)
Resistencia a la Enfermedad/genética , Hibridación Genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Secale/genética , Triticum/genética , Ascomicetos/patogenicidad , Basidiomycota/patogenicidad , Cromosomas de las Plantas , Análisis Citogenético , Hibridación Fluorescente in Situ , Enfermedades de las Plantas/microbiología , Secale/microbiología , Triticum/microbiología
18.
Plant Dis ; 102(5): 925-931, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-30673391

RESUMEN

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a serious disease of wheat (Triticum aestivum L.) throughout the world. Host resistance is the most effective and preferred means for managing this disease. Line 10V-2, a wheat breeding line with superior agronomic performance, shows broad-spectrum seedling resistance to powdery mildew. Genetic analysis demonstrated that its resistance was controlled by a single dominant gene, tentatively designated Pm10V-2. This gene was localized near the documented Pm2 locus on chromosome 5DS using the simple sequence repeat (SSR) marker Cfd81. To saturate the marker map of Pm10V-2, more markers were developed using bulked segregant RNA-Seq. Two single-nucleotide polymorphism (SNP) markers (Swgi047 and Swgi064), three expressed sequence tag markers (Swgi007, Swgi029, and Swgi038), and one SSR marker (Swgi066) were polymorphic between the resistant and susceptible bulks and showed tightly linked to the Pm10V-2 gene. Pm10V-2 was flanked by the new developed markers Swgi064 and Swgi066 at genetic distances of 0.4 and 1.2 centimorgans (cM), respectively, and cosegregated with Swgi007 and Swgi038. The homologous sequence of Pm2a was cloned from 10V-2 based on a recent study. Although the sequence cloned from 10V-2 was completely identical to that of the reported Pm2a-related gene, they did not cosegregate but were separated at a genetic distance of 1.6 cM, indicating that Pm10V-2 was different from the reported of Pm2a-related gene. When inoculated with multiple B. graminis f. sp. tritici isolates, Pm10V-2 had a significantly different resistance spectrum from Pm2a and other powdery mildew (Pm) resistance genes at or near the Pm2 locus. Therefore, Pm10V-2 may be a new Pm2 allele or Pm2-linked gene. To use Pm10V-2 in marker-assisted selection (MAS) breeding, seven markers applicable for MAS were confirmed, including three newly developed markers (Swgi029, Swgi038, and Swgi064) in the present work. Using these markers, a great number of resistant lines with desirable agronomic performance were selected from crosses involving 10V-2, including the breeding line KM5016, which has been entered in the Regional trials in Hebei Province, China.


Asunto(s)
Ascomicetos/fisiología , Resistencia a la Enfermedad/genética , Marcadores Genéticos , Selección Genética , Triticum/genética , Triticum/microbiología , Cruzamiento , Enfermedades de las Plantas/microbiología
19.
Plant Dis ; 100(8): 1541-1547, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30686238

RESUMEN

Exploitation of host resistance is important for controlling powdery mildew of wheat (Triticum aestivum L.). In this study, a wheat-Thinopyrum intermedium introgression line, designated WE99, conferred seedling resistance to 47 of 49 Blumeria graminis f. sp. tritici isolates. Genetic analysis demonstrated that the resistance segregation deviated significantly from a single gene Mendelian ratio. However, marker analysis indicated that only a single recessive resistance gene, temporarily designated PmWE99, conferred powdery mildew resistance (Pm). PmWE99 was mapped to chromosome arm 2BS and linked to the three simple-sequence repeat markers Gwm148, Gwm271, and Barc55. Using race spectrum analysis, PmWE99 was shown to be significantly different from the documented genes Pm42 and MlIW170 located on chromosome arm 2BS and, thus, appeared to be a new Pm gene. Examination of the genotype frequencies in the F2:3 families showed that a genetic variation in the PmWE99 interval that favored the transmission of the WE99 allele could be the cause of the deviated segregation. Further investigation revealed that the abnormal segregation only occurred at the PmWE99 interval and was not common at other loci in this population. Identification of PmWE99 will increase the diversity of the Pm genes for wheat improvement.

20.
Int J Biol Macromol ; 251: 126322, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37591436

RESUMEN

There are significant differences in meat production, growth rate and other traits between Western commercial pigs and Chinese local pigs. Comparative transcriptome approaches have identified many coding and non-coding candidate genes associated various traits. However, the expression and function of circular RNAs (circRNAs) in different pig tissues are largely unknown. In this study, we conducted a comprehensive analysis of the genome-wide circRNA expression profile across ten tissues in Luchuan (a Chinese local breed) and Duroc (a Western commercial breed) pigs. We identified a total of 56,254 circRNAs, of which 42.9 % were not previously annotated. We found that 33.7 % of these circRNAs were differentially expressed. Enrichment analysis revealed that differentially expressed circRNAs might contribute to the phenotypic differentiation between Luchuan and Duroc pigs. We identified 538 tissue-specific circRNAs, most of which were specifically expressed in the brain and skeletal muscle. Competitive endogenous RNA network analysis suggested that skeletal muscle-specific circPSME4 was co-expressed with MYOD1 and targeted by ssc-miR-181d-3p. Functional analysis revealed that circPSME4 knockdown could promote the proliferation and differentiation of myoblasts. Together, our findings provide valuable resources of circRNAs for animal breeding and biomedical research. We demonstrated that circPSME4 is a novel regulator of skeletal muscle development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA