Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.200
Filtrar
1.
Cell ; 186(18): 3758-3775, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37657418

RESUMEN

With the rapid expansion of aging biology research, the identification and evaluation of longevity interventions in humans have become key goals of this field. Biomarkers of aging are critically important tools in achieving these objectives over realistic time frames. However, the current lack of standards and consensus on the properties of a reliable aging biomarker hinders their further development and validation for clinical applications. Here, we advance a framework for the terminology and characterization of biomarkers of aging, including classification and potential clinical use cases. We discuss validation steps and highlight ongoing challenges as potential areas in need of future research. This framework sets the stage for the development of valid biomarkers of aging and their ultimate utilization in clinical trials and practice.


Asunto(s)
Envejecimiento , Longevidad , Humanos , Biomarcadores
2.
Cell ; 183(7): 1826-1847.e31, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33296702

RESUMEN

Inborn errors of human interferon gamma (IFN-γ) immunity underlie mycobacterial disease. We report a patient with mycobacterial disease due to inherited deficiency of the transcription factor T-bet. The patient has extremely low counts of circulating Mycobacterium-reactive natural killer (NK), invariant NKT (iNKT), mucosal-associated invariant T (MAIT), and Vδ2+ γδ T lymphocytes, and of Mycobacterium-non reactive classic TH1 lymphocytes, with the residual populations of these cells also producing abnormally small amounts of IFN-γ. Other lymphocyte subsets develop normally but produce low levels of IFN-γ, with the exception of CD8+ αß T and non-classic CD4+ αß TH1∗ lymphocytes, which produce IFN-γ normally in response to mycobacterial antigens. Human T-bet deficiency thus underlies mycobacterial disease by preventing the development of innate (NK) and innate-like adaptive lymphocytes (iNKT, MAIT, and Vδ2+ γδ T cells) and IFN-γ production by them, with mycobacterium-specific, IFN-γ-producing, purely adaptive CD8+ αß T, and CD4+ αß TH1∗ cells unable to compensate for this deficit.


Asunto(s)
Inmunidad Adaptativa , Inmunidad Innata , Interferón gamma/inmunología , Mycobacterium/inmunología , Proteínas de Dominio T Box/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Linaje de la Célula , Preescolar , Cromatina/metabolismo , Islas de CpG/genética , Metilación de ADN/genética , Células Dendríticas/metabolismo , Epigénesis Genética , Femenino , Homocigoto , Humanos , Mutación INDEL/genética , Lactante , Interferón gamma/metabolismo , Células Asesinas Naturales/citología , Células Asesinas Naturales/metabolismo , Mutación con Pérdida de Función/genética , Masculino , Infecciones por Mycobacterium/genética , Infecciones por Mycobacterium/inmunología , Infecciones por Mycobacterium/microbiología , Linaje , Proteínas de Dominio T Box/química , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética , Linfocitos T Colaboradores-Inductores/inmunología , Transcriptoma/genética
3.
Nat Immunol ; 18(5): 519-529, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28346409

RESUMEN

Obesity is associated with metabolic inflammation and endoplasmic reticulum (ER) stress, both of which promote metabolic disease progression. Adipose tissue macrophages (ATMs) are key players orchestrating metabolic inflammation, and ER stress enhances macrophage activation. However, whether ER stress pathways underlie ATM regulation of energy homeostasis remains unclear. Here, we identified inositol-requiring enzyme 1α (IRE1α) as a critical switch governing M1-M2 macrophage polarization and energy balance. Myeloid-specific IRE1α abrogation in Ern1f/f; Lyz2-Cre mice largely reversed high-fat diet (HFD)-induced M1-M2 imbalance in white adipose tissue (WAT) and blocked HFD-induced obesity, insulin resistance, hyperlipidemia and hepatic steatosis. Brown adipose tissue (BAT) activity, WAT browning and energy expenditure were significantly higher in Ern1f/f; Lyz2-Cre mice. Furthermore, IRE1α ablation augmented M2 polarization of macrophages in a cell-autonomous manner. Thus, IRE1α senses protein unfolding and metabolic and immunological states, and consequently guides ATM polarization. The macrophage IRE1α pathway drives obesity and metabolic syndrome through impairing BAT activity and WAT browning.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Tejido Adiposo Blanco/patología , Endorribonucleasas/metabolismo , Macrófagos/fisiología , Obesidad/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Diferenciación Celular/genética , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Endorribonucleasas/genética , Metabolismo Energético/genética , Humanos , Activación de Macrófagos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética
4.
Trends Biochem Sci ; 48(7): 618-628, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37069045

RESUMEN

During cellular senescence and organismal aging, cells display various molecular and morphological changes. Although many aging-related long noncoding RNAs (lncRNAs) are highly associated with senescence-associated secretory phenotype, the roles of lncRNAs in senescence-associated nuclear architecture and morphological changes are just starting to emerge. Here I review lncRNAs associated with nuclear structure establishment and maintenance, their aging-related changes, and then focus on the pervasive, yet underappreciated, role of RNA double-strand DNA triplexes for lncRNAs to recognize targeted genomic regions, making lncRNAs the nexus between DNA and proteins to regulate nuclear structural changes. Finally, I discuss the future of deciphering direct links of lncRNA changes to various nuclear morphology changes assisted by artificial intelligence and genetic perturbations.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Inteligencia Artificial , Núcleo Celular/metabolismo , ADN/genética , Senescencia Celular/genética
5.
Cell ; 148(5): 1039-50, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22385967

RESUMEN

Impairment of working memory is one of the most important deleterious effects of marijuana intoxication in humans, but its underlying mechanisms are presently unknown. Here, we demonstrate that the impairment of spatial working memory (SWM) and in vivo long-term depression (LTD) of synaptic strength at hippocampal CA3-CA1 synapses, induced by an acute exposure of exogenous cannabinoids, is fully abolished in conditional mutant mice lacking type-1 cannabinoid receptors (CB(1)R) in brain astroglial cells but is conserved in mice lacking CB(1)R in glutamatergic or GABAergic neurons. Blockade of neuronal glutamate N-methyl-D-aspartate receptors (NMDAR) and of synaptic trafficking of glutamate α-amino-3-hydroxy-5-methyl-isoxazole propionic acid receptors (AMPAR) also abolishes cannabinoid effects on SWM and LTD induction and expression. We conclude that the impairment of working memory by marijuana and cannabinoids is due to the activation of astroglial CB(1)R and is associated with astroglia-dependent hippocampal LTD in vivo.


Asunto(s)
Astrocitos/metabolismo , Cannabinoides/farmacología , Hipocampo/metabolismo , Memoria a Corto Plazo/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Animales , Cannabis/química , Hipocampo/citología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Ratones , Plasticidad Neuronal , Ratas , Receptor Cannabinoide CB1/genética
6.
EMBO J ; 41(8): e109633, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35253240

RESUMEN

Ageing is a complex process with common and distinct features across tissues. Unveiling the underlying processes driving ageing in individual tissues is indispensable to decipher the mechanisms of organismal longevity. Caenorhabditis elegans is a well-established model organism that has spearheaded ageing research with the discovery of numerous genetic pathways controlling its lifespan. However, it remains challenging to dissect the ageing of worm tissues due to the limited description of tissue pathology and access to tissue-specific molecular changes during ageing. In this study, we isolated cells from five major tissues in young and old worms and profiled the age-induced transcriptomic changes within these tissues. We observed a striking diversity of ageing across tissues and identified different sets of longevity regulators therein. In addition, we found novel tissue-specific factors, including irx-1 and myrf-2, which control the integrity of the intestinal barrier and sarcomere structure during ageing respectively. This study demonstrates the complexity of ageing across worm tissues and highlights the power of tissue-specific transcriptomic profiling during ageing, which can serve as a resource to the field.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidad/genética , Transcriptoma
7.
PLoS Pathog ; 20(2): e1012048, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38408104

RESUMEN

The activation of stimulator of interferon genes (STING) signaling induces the production of type I interferons (IFNs), which play critical roles in protective innate immunity for the host to defend against viral infections. Therefore, achieving sustained or enhanced STING activation could become an antiviral immune strategy with potential broad-spectrum activities. Here, we discovered that various clinically used microtubule-destabilizing agents (MDAs) for the treatment of cancer showed a synergistic effect with the activation of STING signaling in innate immune response. The combination of a STING agonist cGAMP and a microtubule depolymerizer MMAE boosted the activation of STING innate immune response and showed broad-spectrum antiviral activity against multiple families of viruses. Mechanistically, MMAE not only disrupted the microtubule network, but also switched the cGAMP-mediated STING trafficking pattern and changed the distribution of Golgi apparatus and STING puncta. The combination of cGAMP and MMAE promoted the oligomerization of STING and downstream signaling cascades. Importantly, the cGAMP plus MMAE treatment increased STING-mediated production of IFNs and other antiviral cytokines to inhibit viral propagation in vitro and in vivo. This study revealed a novel role of the microtubule destabilizer in antiviral immune responses and provides a previously unexploited strategy based on STING-induced innate antiviral immunity.


Asunto(s)
Interferón Tipo I , Proteínas de la Membrana , Proteínas de la Membrana/genética , Inmunidad Innata , Transducción de Señal , Citocinas , Interferón Tipo I/farmacología
8.
J Immunol ; 212(9): 1504-1518, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38517294

RESUMEN

Adoptive cell therapy (ACT), especially with CD4+ regulatory T cells (CD4+ Tregs), is an emerging therapeutic strategy to minimize immunosuppression and promote long-term allograft acceptance, although much research remains to realize its potential. In this study, we investigated the potency of novel Ab-suppressor CXCR5+CD8+ T cells (CD8+ TAb-supp) in comparison with conventional CD25highFoxp3+CD4+ Tregs for suppression of humoral alloimmunity in a murine kidney transplant (KTx) model of Ab-mediated rejection (AMR). We examined quantity of peripheral blood, splenic and graft-infiltrating CD8+ TAb-supp, and CD4+ Tregs in KTx recipients and found that high alloantibody-producing CCR5 knockout KTx recipients have significantly fewer post-transplant peripheral blood and splenic CD8+ TAb-supp, as well as fewer splenic and graft-infiltrating CD4+ Tregs compared with wild-type KTx recipients. ACT with alloprimed CXCR5+CD8+ T cells reduced alloantibody titer, splenic alloprimed germinal center (GC) B cell quantity, and improved AMR histology in CCR5 knockout KTx recipients. ACT with alloprimed CD4+ Treg cells improved AMR histology without significantly inhibiting alloantibody production or the quantity of splenic alloprimed GC B cells. Studies with TCR transgenic mice confirmed Ag specificity of CD8+ TAb-supp-mediated effector function. In wild-type recipients, CD8 depletion significantly increased alloantibody titer, GC B cells, and severity of AMR pathology compared with isotype-treated controls. Anti-CD25 mAb treatment also resulted in increased but less pronounced effect on alloantibody titer, quantity of GC B cells, and AMR pathology than CD8 depletion. To our knowledge, this is the first report that CD8+ TAb-supp cells are more potent regulators of humoral alloimmunity than CD4+ Treg cells.


Asunto(s)
Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Trasplante de Riñón , Linfocitos T Reguladores , Animales , Ratones , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Rechazo de Injerto/inmunología , Isoanticuerpos , Trasplante de Riñón/efectos adversos , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores CXCR5/inmunología , Inmunidad Humoral/inmunología
9.
Nature ; 577(7791): E6, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31896818

RESUMEN

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Nature ; 586(7827): E7, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32934359

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Chem Rev ; 123(8): 4934-4971, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36917457

RESUMEN

Taxol (paclitaxel), the most well-known taxane diterpenoid, is the best-selling natural-source anticancer drug ever produced and one of the most common prescriptions in the treatment of breast, lung, and ovarian cancers, saving countless lives around the world. Structurally, Taxol possesses a highly oxygenated [6-8-6-4] core bearing 11 stereocenters, seven of which are contiguous chiral centers. Moreover, the extremely strained bicyclo[5.3.1] undecane ring system with a bridgehead double bond is a unique structural feature. All these features make Taxol a highly challenging synthetic target. Tremendous synthetic efforts from more than 60 research groups around the world have already culminated in ten total syntheses and three formal syntheses, as well as more than 60 synthetic model studies of Taxol. This review is intended to provide a long-overdue appraisal of the great achievements in the total syntheses of Taxol reported in the last few decades. In doing so, we summarize the development of synthesis toward Taxol from 1994 to 2022, including the evolution of synthetic strategy for accessing this complex molecular scaffold and key lessons learned from such endeavors. Finally, we briefly discuss the future of the research in this area.


Asunto(s)
Antineoplásicos , Paclitaxel , Paclitaxel/química , Paclitaxel/uso terapéutico
12.
Nature ; 572(7770): 528-532, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31391582

RESUMEN

During post-implantation development of the mouse embryo, descendants of the inner cell mass in the early epiblast transit from the naive to primed pluripotent state1. Concurrently, germ layers are formed and cell lineages are specified, leading to the establishment of the blueprint for embryogenesis. Fate-mapping and lineage-analysis studies have revealed that cells in different regions of the germ layers acquire location-specific cell fates during gastrulation2-5. The regionalization of cell fates preceding the formation of the basic body plan-the mechanisms of which are instrumental for understanding embryonic programming and stem-cell-based translational study-is conserved in vertebrate embryos6-8. However, a genome-wide molecular annotation of lineage segregation and tissue architecture of the post-implantation embryo has yet to be undertaken. Here we report a spatially resolved transcriptome of cell populations at defined positions in the germ layers during development from pre- to late-gastrulation stages. This spatiotemporal transcriptome provides high-resolution digitized in situ gene-expression profiles, reveals the molecular genealogy of tissue lineages and defines the continuum of pluripotency states in time and space. The transcriptome further identifies the networks of molecular determinants that drive lineage specification and tissue patterning, supports a role of Hippo-Yap signalling in germ-layer development and reveals the contribution of visceral endoderm to the endoderm in the early mouse embryo.


Asunto(s)
Linaje de la Célula , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Estratos Germinativos/embriología , Estratos Germinativos/metabolismo , Vía de Señalización Hippo , Ratones , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/metabolismo , Regulón/genética , Transducción de Señal , Transcriptoma/genética , Proteínas Señalizadoras YAP
13.
Am J Respir Cell Mol Biol ; 70(5): 364-378, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38300138

RESUMEN

Various infections trigger a storm of proinflammatory cytokines in which IL-6 acts as a major contributor and leads to diffuse alveolar damage in patients. However, the metabolic regulatory mechanisms of IL-6 in lung injury remain unclear. Polyriboinosinic-polyribocytidylic acid [poly(I:C)] activates pattern recognition receptors involved in viral sensing and is widely used in alternative animal models of RNA virus-infected lung injury. In this study, intratracheal instillation of poly(I:C) with or without an IL-6-neutralizing antibody model was combined with metabonomics, transcriptomics, and so forth to explore the underlying molecular mechanisms of IL-6-exacerbated lung injury. We found that poly(I:C) increased the IL-6 concentration, and the upregulated IL-6 further induced lung ferroptosis, especially in alveolar epithelial type II cells. Meanwhile, lung regeneration was impaired. Mechanistically, metabolomic analysis showed that poly(I:C) significantly decreased glycolytic metabolites and increased bile acid intermediate metabolites that inhibited the bile acid nuclear receptor farnesoid X receptor (FXR), which could be reversed by IL-6-neutralizing antibody. In the ferroptosis microenvironment, IL-6 receptor monoclonal antibody tocilizumab increased FXR expression and subsequently increased the Yes-associated protein (YAP) concentration by enhancing PKM2 in A549 cells. FXR agonist GW4064 and liquiritin, a potential natural herbal ingredient as an FXR regulator, significantly attenuated lung tissue inflammation and ferroptosis while promoting pulmonary regeneration. Together, the findings of the present study provide the evidence that IL-6 promotes ferroptosis and impairs regeneration of alveolar epithelial type II cells during poly(I:C)-induced murine lung injury by regulating the FXR-PKM2-YAP axis. Targeting FXR represents a promising therapeutic strategy for IL-6-associated inflammatory lung injury.


Asunto(s)
Ferroptosis , Interleucina-6 , Pulmón , Poli I-C , Receptores Citoplasmáticos y Nucleares , Ferroptosis/efectos de los fármacos , Animales , Poli I-C/farmacología , Interleucina-6/metabolismo , Ratones , Receptores Citoplasmáticos y Nucleares/metabolismo , Pulmón/patología , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Ratones Endogámicos C57BL , Masculino , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Lesión Pulmonar/tratamiento farmacológico , Humanos , Transducción de Señal/efectos de los fármacos
14.
J Am Chem Soc ; 146(36): 24782-24787, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39207015

RESUMEN

The first type II intramolecular [3 + 2] annulation of allenylsilane-ene has been achieved, enabling diastereoselective and efficient construction of synthetically challenging bridged five-membered ring systems such as bicyclo[3.2.1]. This mild and direct process shows a broad substrate scope and is highly stereospecific. Particularly, this work represents the first stereoselective method for the direct synthesis of bicyclo[3.2.1] ring systems from acyclic precursors. Additionally, the first asymmetric total syntheses of (+)- and (-)-strepsesquitriol, and the efficient formation of the synthetically challenging tetracyclic core of pierisjaponol D are achieved by this type II [3 + 2] annulation reaction.

15.
Br J Cancer ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39313575

RESUMEN

BACKGROUND: HER2(+) gastric cancer (GC) can benefit from trastuzumab. However, the impact of additional trastuzumab in preoperative treatment on immune cells remains largely unknown. METHODS: In cohort I, immune cells were detected by immunohistochemistry in 1321 patients. Then 88 HER2(+) patients received preoperative therapy were collected as cohort II. Immune cell profiles and changes were analyzed in paired pre- and post-operative specimens using multiple immunohistochemistry staining. RESULTS: In the treatment-naive GC patients (n = 1002), CD3+ and CD8+ T cell infiltration was significantly lower in the HER2(+) GC patients together with higher FoxP3+ T cells compared with HER2(-). However, FoxP3+ T and CD20+ B cell infiltration was significantly higher in HER2(+) GC after neoadjuvant chemotherapy (n = 319). The trastuzumab-exposed group had higher CD8+ T and lower FoxP3+ T cell infiltration and CD8+ T cell was even more significant in responders. Additionally, tertiary lymphoid structure (TLS) density increased in invasion margin of residual tumors. Patients with lower TLS in the tumor core or lower FoxP3+ T cells had better overall survival in the trastuzumab-exposed group. CONCLUSION: Addition of trastuzumab modulates the immune microenvironment, suggesting the potential mechanism of the favorable outcome of anti-HER2 therapy and providing a theoretical rationale for the combinational immunotherapy in resectable HER2(+) GC patients.

16.
Radiology ; 312(3): e232815, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39254448

RESUMEN

Background Contrast-enhanced US (CEUS) can be used preoperatively for evaluating muscle invasion in bladder cancer, which is important for determining appropriate treatment. However, diagnostic criteria for assessing this at CEUS have not been standardized. Purpose To develop and validate a CEUS Vesical Imaging Reporting and Data System (VI-RADS) for evaluating muscle invasion in bladder cancer. Materials and Methods This single-center prospective study consecutively enrolled patients with suspected bladder cancer. Participants underwent transabdominal or intracavity CEUS between July 2021 and May 2023. Participants were divided into a training set and a validation set at a 2:1 ratio based on the chronologic order of enrollment. The training set was used to identify major imaging features to include in CEUS VI-RADS, and the likelihood of muscle invasion per category was determined using a pathologic reference standard. The optimal VI-RADS category cutoff for muscle invasion was determined with use of the maximum Youden index. The validation set was assessed by novice and expert readers and used to validate the diagnostic performance and interreader agreement of the developed system. Results Overall, 126 participants (median age, 64 years [IQR, 57-71 years]; 107 male) and 67 participants (median age, 64 years [IQR, 56-69 years]; 49 male) were included in the training and validation set, respectively. In the training set, the optimal CEUS VI-RADS category cutoff for muscle invasion was VI-RADS 4 or higher (Youden index, 0.77). In the validation set, CEUS VI-RADS achieved good performance for both novice and expert readers (area under the receiver operating characteristic curve, 0.80 [95% CI: 0.70, 0.90] vs 0.88 [95% CI: 0.80, 0.97]; P = .09). The interreader agreement regarding the evaluation of CEUS VI-RADS category was 0.77 (95% CI: 0.65, 0.85) for novice readers, 0.87 (95% CI: 0.79, 0.92) for expert readers, and 0.78 (95% CI: 0.70, 0.84) for all readers. Conclusion The developed CEUS VI-RADS showed good performance and interreader agreement for the assessment of muscle invasion in bladder cancer. Chinese Clinical Trial Registry no. ChiCTR2100049435 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Morrell in this issue.


Asunto(s)
Medios de Contraste , Invasividad Neoplásica , Ultrasonografía , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Neoplasias de la Vejiga Urinaria/patología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Ultrasonografía/métodos , Invasividad Neoplásica/diagnóstico por imagen , Vejiga Urinaria/diagnóstico por imagen , Vejiga Urinaria/patología , Reproducibilidad de los Resultados
17.
J Neuroinflammation ; 21(1): 176, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026249

RESUMEN

Accumulating evidence implicates that herpes simplex virus type 1 (HSV-1) has been linked to the development and progression of Alzheimer's disease (AD). HSV-1 infection induces ß-amyloid (Aß) deposition in vitro and in vivo, but the effect and precise mechanism remain elusive. Here, we show that HSV-1 infection of the brains of transgenic 5xFAD mice resulted in accelerated Aß deposition, gliosis, and cognitive dysfunction. We demonstrate that HSV-1 infection induced the recruitment of microglia to the viral core to trigger microglial phagocytosis of HSV-GFP-positive neuronal cells. In addition, we reveal that the NLRP3 inflammasome pathway induced by HSV-1 infection played a crucial role in Aß deposition and the progression of AD caused by HSV-1 infection. Blockade of the NLRP3 inflammasome signaling reduces Aß deposition and alleviates cognitive decline in 5xFAD mice after HSV-1 infection. Our findings support the notion that HSV-1 infection is a key factor in the etiology of AD, demonstrating that NLRP3 inflammasome activation functions in the interface of HSV-1 infection and Aß deposition in AD.


Asunto(s)
Enfermedad de Alzheimer , Progresión de la Enfermedad , Herpesvirus Humano 1 , Ratones Transgénicos , Microglía , Proteína con Dominio Pirina 3 de la Familia NLR , Fagocitosis , Transducción de Señal , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/virología , Ratones , Microglía/metabolismo , Microglía/patología , Microglía/virología , Transducción de Señal/fisiología , Humanos , Herpes Simple/patología , Herpes Simple/inmunología , Herpes Simple/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animales de Enfermedad , Presenilina-1/genética , Presenilina-1/metabolismo
18.
Small ; 20(12): e2307557, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946707

RESUMEN

Although zinc metal anode is promising for zinc-ion batteries (ZIBs) owing to high energy density, its reversibility is significantly obstructed by uncontrolled dendrite growth and parasitic reactions. Optimizing electrolytes is a facile yet effective method to simultaneously address these issues. Herein, 2-(N-morpholino)ethanesulfonic acid (MES), a pH buffer as novel additive, is initially introduced into conventional ZnSO4 electrolyte to ensure a dendrite-free zinc anode surface, enabling a stable Zn/electrolyte interface, which is achieved by controlling the solvated sheath through H2O poor electric double layer (EDL) derived from zwitterionic groups. Moreover, this zwitterionic additive can balance localized H+ concentration of the electrolyte system, thus preventing parasitic reactions in damaging electrodes. DFT calculation proves that the MES additive has a strong affinity with Zn2+ and induces uniform deposition along (002) orientation. As a result, the Zn anode in MES-based electrolyte exhibits exceptional plating/stripping lifespan with 1600 h at 0.5 mA cm-2 (0.5 mAh cm-2) and 430 h at 5.0 mA cm-2 (5.0 mAh cm-2) while it maintains high coulombic efficiency of 99.8%. This work proposes an effective and facile approach for designing dendrite-free anode for future aqueous Zn-based storage devices.

19.
Small ; 20(29): e2310851, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38334256

RESUMEN

Inspired by the timely emergence of silkworm pupae from their cocoons, silkworm chrysalis-like probiotic composites (SCPCs) are developed for the comprehensive therapy of inflammatory bowel disease (IBD), in which probiotics are enveloped as the "pupa" in a sequential layering of silk sericin (SS), tannic acid (TA), and polydopamine, akin to the protective "cocoon". Compared to unwrapped probiotics, these composites not only demonstrate exceptional resistance to the harsh gastrointestinal environment and exhibit over 200 times greater intestinal colonization but also safeguard probiotics from the damage of IBD environment while enabling probiotics sustained release. The probiotics, in synergy with SS and TA, provide a multi-crossed comprehensive therapy for IBD that simultaneously addresses various pathological features of IBD, including intestinal barrier disruption, elevated pro-inflammatory cytokines, heightened oxidative stress, and disturbances in the intestinal microbiota. SCPCs exhibit remarkable outcomes, including a 9.7-fold reduction in intestinal permeability, an 8.9-fold decrease in IL-6 levels, and a 2.9-fold reduction in TNF-α levels compared to uncoated probiotics. Furthermore, SCPCs demonstrate an impressive 92.25% reactive oxygen species clearance rate, significantly enhance the richness of beneficial intestinal probiotics, and effectively diminish the abundance of pathogenic bacteria, indicating a substantial improvement in the overall therapeutic effect of IBD.


Asunto(s)
Bombyx , Enfermedades Inflamatorias del Intestino , Probióticos , Animales , Bombyx/química , Enfermedades Inflamatorias del Intestino/terapia , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Intestinos , Polímeros/química , Microbioma Gastrointestinal/efectos de los fármacos , Sericinas/química , Sericinas/farmacología , Indoles/química , Taninos/química , Taninos/farmacología , Ratones
20.
Fungal Genet Biol ; 172: 103889, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38513939

RESUMEN

Trichoderma is an excellent biocontrol agent, but most Trichoderma genomes remained at the scaffold level, which greatly limits the research of biocontrol mechanism. Here, we reported the chromosome-level genome of Trichoderma harzianum CGMCC20739 (Tha739), T. asperellum CGMCC11653 (Tas653) and T. atroviride CGMCC40488 (Tat488), they were assembled into 7 chromosomes, genome size were 40 Mb (10,611 genes), 37.3 Mb (10,102 genes) and 36.3 Mb (9,896 genes), respectively. The positive selected genes of three strains were associated to response to stimulus, signaling transduction, immune system and localization. Furthermore, the number of transcription factors in Tha739, Tas653 and Tat488 strains had significant difference, which may contribute to the differential biocontrol function and stress tolerance. The genes related to signal transduction and gene clusters related to antimicrobial compounds in Tha739 were more than those in Tas653 and Tat488, which showed Tha739 may keenly sense other fungi and quickly secret antimicrobial compounds to inhibit other fungi. Tha739 also contained more genes associated to detoxification, antioxidant and nutrition utilization, indicating it had higher stress-tolerance to hostile environments. And the substrate for synthesizing IAA in Tha739 was mainly 3-indole acetonitrile and indole acetaldehyde, but in Tat488, it was indole-3-acetamide, moreover, Tha739 secreted more phosphatase and phytase and was more related to soil phosphorus metabolism, Tat488 secreted more urease and was more related to soil nitrogen metabolism. These candidate genes related to biocontrol function and stress-tolerance laid foundations for construction of functional strains. All above proved the difference in biocontrol function of Tha739, Tas653 and Tat488 strains, however, the defects in individual strains could be compensated for through Trichoderma-biome during the commercial application process of biocontrol Trichoderma strains.


Asunto(s)
Genoma Fúngico , Trichoderma , Genoma Fúngico/genética , Trichoderma/genética , Factores de Transcripción/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Familia de Multigenes/genética , Hypocreales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA