Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Circ Res ; 134(5): 482-501, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38323474

RESUMEN

BACKGROUND: Mitochondrial dysfunction is a primary driver of cardiac contractile failure; yet, the cross talk between mitochondrial energetics and signaling regulation remains obscure. Ponatinib, a tyrosine kinase inhibitor used to treat chronic myeloid leukemia, is among the most cardiotoxic tyrosine kinase inhibitors and causes mitochondrial dysfunction. Whether ponatinib-induced mitochondrial dysfunction triggers the integrated stress response (ISR) to induce ponatinib-induced cardiotoxicity remains to be determined. METHODS: Using human induced pluripotent stem cells-derived cardiomyocytes and a recently developed mouse model of ponatinib-induced cardiotoxicity, we performed proteomic analysis, molecular and biochemical assays to investigate the relationship between ponatinib-induced mitochondrial stress and ISR and their role in promoting ponatinib-induced cardiotoxicity. RESULTS: Proteomic analysis revealed that ponatinib activated the ISR in cardiac cells. We identified GCN2 (general control nonderepressible 2) as the eIF2α (eukaryotic translation initiation factor 2α) kinase responsible for relaying mitochondrial stress signals to trigger the primary ISR effector-ATF4 (activating transcription factor 4), upon ponatinib exposure. Mechanistically, ponatinib treatment exerted inhibitory effects on ATP synthase activity and reduced its expression levels resulting in ATP deficits. Perturbed mitochondrial function resulting in ATP deficits then acts as a trigger of GCN2-mediated ISR activation, effects that were negated by nicotinamide mononucleotide, an NAD+ precursor, supplementation. Genetic inhibition of ATP synthase also activated GCN2. Interestingly, we showed that the decreased abundance of ATP also facilitated direct binding of ponatinib to GCN2, unexpectedly causing its activation most likely because of a conformational change in its structure. Importantly, administering an ISR inhibitor protected human induced pluripotent stem cell-derived cardiomyocytes against ponatinib. Ponatinib-treated mice also exhibited reduced cardiac function, effects that were attenuated upon systemic ISRIB administration. Importantly, ISRIB does not affect the antitumor effects of ponatinib in vitro. CONCLUSIONS: Neutralizing ISR hyperactivation could prevent or reverse ponatinib-induced cardiotoxicity. The findings that compromised ATP production potentiates GCN2-mediated ISR activation have broad implications across various cardiac diseases. Our results also highlight an unanticipated role of ponatinib in causing direct activation of a kinase target despite its role as an ATP-competitive kinase inhibitor.


Asunto(s)
Imidazoles , Células Madre Pluripotentes Inducidas , Enfermedades Mitocondriales , Piridazinas , Humanos , Animales , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Cardiotoxicidad/patología , Proteómica , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Inhibidores de Proteínas Quinasas/toxicidad , Enfermedades Mitocondriales/patología , Adenosina Trifosfato
2.
Circ Res ; 133(9): 758-771, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37737016

RESUMEN

BACKGROUND: Atrial fibrillation (AF)-the most common sustained cardiac arrhythmia-increases thromboembolic stroke risk 5-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function remain unknown. We tested the hypothesis that increased expression of PPP1R12C (protein phosphatase 1 regulatory subunit 12C)-the PP1 (protein phosphatase 1) regulatory subunit targeting MLC2a (atrial myosin light chain 2)-causes hypophosphorylation of MLC2a and results in atrial hypocontractility. METHODS: Right atrial appendage tissues were isolated from human patients with AF versus sinus rhythm controls. Western blots, coimmunoprecipitation, and phosphorylation studies were performed to examine how the PP1c (PP1 catalytic subunit)-PPP1R12C interaction causes MLC2a dephosphorylation. In vitro studies of pharmacological MRCK (myotonic dystrophy kinase-related Cdc42-binding kinase) inhibitor (BDP5290) in atrial HL-1 cells were performed to evaluate PP1 holoenzyme activity on MLC2a. Cardiac-specific lentiviral PPP1R12C overexpression was performed in mice to evaluate atrial remodeling with atrial cell shortening assays, echocardiography, and AF inducibility with electrophysiology studies. RESULTS: In human patients with AF, PPP1R12C expression was increased 2-fold versus sinus rhythm controls (P=2.0×10-2; n=12 and 12 in each group) with >40% reduction in MLC2a phosphorylation (P=1.4×10-6; n=12 and 12 in each group). PPP1R12C-PP1c binding and PPP1R12C-MLC2a binding were significantly increased in AF (P=2.9×10-2 and 6.7×10-3, respectively; n=8 and 8 in each group). In vitro studies utilizing drug BDP5290, which inhibits T560-PPP1R12C phosphorylation, demonstrated increased PPP1R12C binding with both PP1c and MLC2a and dephosphorylation of MLC2a. Mice treated with lentiviral PPP1R12C vector demonstrated a 150% increase in left atrial size versus controls (P=5.0×10-6; n=12, 8, and 12), with reduced atrial strain and atrial ejection fraction. Pacing-induced AF in mice treated with lentiviral PPP1R12C vector was significantly higher than in controls (P=1.8×10-2 and 4.1×10-2, respectively; n=6, 6, and 5). CONCLUSIONS: Patients with AF exhibit increased levels of PPP1R12C protein compared with controls. PPP1R12C overexpression in mice increases PP1c targeting to MLC2a and causes MLC2a dephosphorylation, which reduces atrial contractility and increases AF inducibility. These findings suggest that PP1 regulation of sarcomere function at MLC2a is a key determinant of atrial contractility in AF.


Asunto(s)
Fibrilación Atrial , Proteína Fosfatasa 1 , Accidente Cerebrovascular , Animales , Humanos , Ratones , Fibrilación Atrial/metabolismo , Atrios Cardíacos/metabolismo , Fosforilación , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo
3.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 39(3): 452-461, 2022 Jun 25.
Artículo en Zh | MEDLINE | ID: mdl-35788514

RESUMEN

Lung cancer is the most threatening tumor disease to human health. Early detection is crucial to improve the survival rate and recovery rate of lung cancer patients. Existing methods use the two-dimensional multi-view framework to learn lung nodules features and simply integrate multi-view features to achieve the classification of benign and malignant lung nodules. However, these methods suffer from the problems of not capturing the spatial features effectively and ignoring the variability of multi-views. Therefore, this paper proposes a three-dimensional (3D) multi-view convolutional neural network (MVCNN) framework. To further solve the problem of different views in the multi-view model, a 3D multi-view squeeze-and-excitation convolution neural network (MVSECNN) model is constructed by introducing the squeeze-and-excitation (SE) module in the feature fusion stage. Finally, statistical methods are used to analyze model predictions and doctor annotations. In the independent test set, the classification accuracy and sensitivity of the model were 96.04% and 98.59% respectively, which were higher than other state-of-the-art methods. The consistency score between the predictions of the model and the pathological diagnosis results was 0.948, which is significantly higher than that between the doctor annotations and the pathological diagnosis results. The methods presented in this paper can effectively learn the spatial heterogeneity of lung nodules and solve the problem of multi-view differences. At the same time, the classification of benign and malignant lung nodules can be achieved, which is of great significance for assisting doctors in clinical diagnosis.


Asunto(s)
Neoplasias Pulmonares , Tomografía Computarizada por Rayos X , Humanos , Pulmón/patología , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patología , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X/métodos
4.
Pharmacol Res ; 174: 105845, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34428587

RESUMEN

AIMS: N6-Methyladenosine (m6A), one of the important epigenitic modifications, is very commom in messenger RNAs (mRNAs) of eukaryotes, and has been involved in various diseases. However, the role of m6A modification in heart regeneration after injury remains unclear. The study was conducted to investigate whether targeting methyltransferase-like 3 (METTL3) could replenish the loss of cardiomyocytes (CMs) and improve cardiac function after myocardial infarction (MI). METHODS AND RESULTS: METTL3 knockout mouse line was generated. A series of functional experiments were carried out and the molecular mechanism was further explored. We identified that METTL3, a methyltransferase of m6A methylation, is upregulated in mouse hearts after birth, which is the opposite of the changes in CMs proliferation. Furthermore, both METTL3 heterozygous knockout mice and administration of METTL3 shRNA adenovirus in mice exhibited CMs cell cycle re-entered, infract size decreased and cardiac function improved after MI. Mechanically, the silencing of METTL3 promoted CMs proliferation by reducing primary miR-143 (pri-miR-143) m6A modificaiton, thereby inhibiting the pri-miR-143 into mature miR-143-3p. Moreover, we found that miR-143-3p has targeting effects on Yap and Ctnnd1 so as to regulate CMs proliferation. CONCLUSION: METTL3 deficiency contributes to heart regeneration after MI via METTL3-pri-miR-143-(miR-143)-Yap/Ctnnd1 axis. This study provides new insights into the significance of RNA m6A modification in heart regeneration.


Asunto(s)
Adenosina/metabolismo , Metiltransferasas/metabolismo , Infarto del Miocardio/metabolismo , Adenoviridae , Animales , Ciclo Celular , Corazón , Humanos , Masculino , Metilación , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs , ARN Mensajero , Regeneración , Transducción de Señal , Transfección , Regulación hacia Arriba
5.
Acta Pharmacol Sin ; 42(6): 921-931, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32839503

RESUMEN

The neonatal heart possesses the ability to proliferate and the capacity to regenerate after injury; however, the mechanisms underlying these processes are not fully understood. Melatonin has been shown to protect the heart against myocardial injury through mitigating oxidative stress, reducing apoptosis, inhibiting mitochondrial fission, etc. In this study, we investigated whether melatonin regulated cardiomyocyte proliferation and promoted cardiac repair in mice with myocardial infarction (MI), which was induced by ligation of the left anterior descending coronary artery. We showed that melatonin administration significantly improved the cardiac functions accompanied by markedly enhanced cardiomyocyte proliferation in MI mice. In neonatal mouse cardiomyocytes, treatment with melatonin (1 µM) greatly suppressed miR-143-3p levels. Silencing of miR-143-3p stimulated cardiomyocytes to re-enter the cell cycle. On the contrary, overexpression of miR-143-3p inhibited the mitosis of cardiomyocytes and abrogated cardiomyocyte mitosis induced by exposure to melatonin. Moreover, Yap and Ctnnd1 were identified as the target genes of miR-143-3p. In cardiomyocytes, inhibition of miR-143-3p increased the protein expression of Yap and Ctnnd1. Melatonin treatment also enhanced Yap and Ctnnd1 protein levels. Furthermore, Yap siRNA and Ctnnd1 siRNA attenuated melatonin-induced cell cycle re-entry of cardiomyocytes. We showed that the effect of melatonin on cardiomyocyte proliferation and cardiac regeneration was impeded by the melatonin receptor inhibitor luzindole. Silencing miR-143-3p abrogated the inhibition of luzindole on cardiomyocyte proliferation. In addition, both MT1 and MT2 siRNA could cancel the beneficial effects of melatonin on cardiomyocyte proliferation. Collectively, the results suggest that melatonin induces cardiomyocyte proliferation and heart regeneration after MI by regulating the miR-143-3p/Yap/Ctnnd1 signaling pathway, providing a new therapeutic strategy for cardiac regeneration.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Melatonina/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Miocitos Cardíacos/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Recién Nacidos , Cateninas/metabolismo , Ciclo Celular/efectos de los fármacos , Células Cultivadas , Corazón/efectos de los fármacos , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/metabolismo , Regeneración/efectos de los fármacos , Proteínas Señalizadoras YAP , Catenina delta
6.
J Cell Physiol ; 235(3): 2753-2760, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31541452

RESUMEN

Cardiomyocytes differentiated from human-induced pluripotent stem cells (hiPSCs) hold great potential for therapy of heart diseases. However, the underlying mechanisms of its cardiac differentiation have not been fully elucidated. Hippo-YAP signal pathway plays important roles in cell differentiation, tissue homeostasis, and organ size. Here, we identify the role of Hippo-YAP signal pathway in determining cardiac differentiation fate of hiPSCs. We found that cardiac differentiation of hiPSCs were significantly inhibited after treatment with verteporfin (a selective and potent YAP inhibitor). During hiPSCs differentiation from mesoderm cells (MESs) into cardiomyocytes, verteporfin treatment caused the cells retained in the earlier cardiovascular progenitor cells (CVPCs) stage. Interestingly, during hiPSCs differentiation from CVPC into cardiomyocytes, verteporfin treatment induced cells dedifferentiation into the earlier CVPC stage. Mechanistically, we found that YAP interacted with transcriptional enhanced associate domain transcription factor 3 (TEAD3) to regulate cardiac differentiation of hiPSCs during the CVPC stage. Consistently, RNAi-based silencing of TEAD3 mimicked the phenotype as the cells treated with verteporfin. Collectively, our study suggests that YAP-TEAD3 signaling is important for cardiomyocyte differentiation of hiPSCs. Our findings provide new insight into the function of Hippo-YAP signal in cardiovascular lineage commitment.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Madre Pluripotentes Inducidas/citología , Desarrollo de Músculos/genética , Miocitos Cardíacos/citología , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Desdiferenciación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Linaje de la Célula/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Humanos , Interferencia de ARN , ARN Interferente Pequeño/genética , Transducción de Señal/genética , Factores de Transcripción de Dominio TEA , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Verteporfina/farmacología , Proteínas Señalizadoras YAP
7.
Stem Cells ; 37(4): 489-503, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30599084

RESUMEN

Iron homeostasis is crucial for a variety of biological processes, but the biological role of iron homeostasis in pluripotent stem cells (PSCs) remains largely unknown. The present study aimed to determine whether iron homeostasis is involved in maintaining the pluripotency of human PSCs (hPSCs). We found that the intracellular depletion of iron leads to a rapid downregulation of NANOG and a dramatic decrease in the self-renewal of hPSCs as well as spontaneous and nonspecific differentiation. Moreover, long-term depletion of iron can result in the remarkable cell death of hPSCs via apoptosis and necrosis pathways. Additionally, we found that the depletion of iron increased the activity of lipoprotein-associated phospholipase A2 (LP-PLA2) and the production of lysophosphatidylcholine, thereby suppressing NANOG expression by enhancer of zeste homolog 2-mediated trimethylation of histone H3 lysine 27. Consistently, LP-PLA2 inhibition abrogated iron depletion-induced loss of pluripotency and differentiation. Altogether, the findings of our study demonstrates that iron homeostasis, acting through glycerophospholipid metabolic pathway, is essential for the pluripotency and survival of hPSCs. Stem Cells 2019;37:489-503.


Asunto(s)
Epigénesis Genética/genética , Glicerofosfolípidos/genética , Glicerofosfolípidos/metabolismo , Hierro/metabolismo , Células Madre Pluripotentes/metabolismo , Diferenciación Celular , Homeostasis , Humanos , Transfección
8.
Mol Ther ; 27(2): 394-410, 2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30638773

RESUMEN

Bone marrow-derived mesenchymal stem cells (BMSCs) have the potential to differentiate into osteoblasts or adipocytes, and the shift between osteogenic and adipogenic differentiation determines bone mass. The aim of this study was to identify whether lncRNAs are involved in the differentiation commitment of BMSCs during osteoporosis. Here, we found ORLNC1, a functionally undefined lncRNA that is highly conserved, which exhibited markedly higher expression levels in BMSCs, bone tissue, and the serum of OVX-induced osteoporotic mice than sham-operated counterparts. Notably, a similar higher abundance of lncRNA-ORLNC1 expression was also observed in the bone tissue of osteoporotic patients. The transgenic mice overexpressing lncRNA-ORLNC1 showed a substantial increase in the osteoporosis-associated bone loss and decline in the osteogenesis of BMSCs. The BMSCs pretreated with lncRNA-ORLNC1-overexpressing lentivirus vector exhibited the suppressed capacity of osteogenic differentiation and oppositely enhanced adipogenic differentiation. We then established that lncRNA-ORLNC1 acted as a competitive endogenous RNA (ceRNA) for miR-296. Moreover, miR-296 was found markedly upregulated during osteoblast differentiation, and it accelerated osteogenic differentiation by targeting Pten. Taken together, our results indicated that the lncRNA-ORLNC1-miR-296-Pten axis may be a critical regulator of the osteoporosis-related switch between osteogenesis and adipogenesis of BMSCs and might represent a plausible therapeutic target for improving osteoporotic bone loss.


Asunto(s)
Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , ARN Largo no Codificante/metabolismo , Adipogénesis/genética , Adipogénesis/fisiología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Femenino , Ratones , Ratones Endogámicos C57BL , Osteoblastos/citología , Osteoblastos/metabolismo , Osteoporosis/genética , Osteoporosis/metabolismo , ARN Largo no Codificante/genética
9.
J Cell Physiol ; 233(10): 7004-7015, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29744879

RESUMEN

An increase in reactive oxygen species (ROS) plays a key role in aging and apoptosis in mesenchymal stem cells derived from bone marrow (BMSCs). NADPH oxidase Nox2 serves as an important source of intracellular ROS formation. This study is designed to determine if blocking Nox2 enhances anti-apoptotic and anti-aging ability of BMSCs to oxidant stress, and thus improves therapeutic efficacy in myocardial infarction (MI). Nox2 inhibitor (Acetovanillone) and Nox2 siRNA were used to block Nox2 in BMSCs, and the cell viability, apoptosis, senescence and survival of BMSCs were determined by CCK-8, Edu staining, TUNEL staining, ß-galactosidase (ß-gal) assay and DAPI labeling. Here we found that both Nox2 inhibitor and Nox2 knockdown remarkably countered the decrease of viability, and the increase of aging and apoptosis of BMSCs by H2 O2 . Whereas, Nox2 overexpression exacerbated the viability reduction, senescence and apoptosis of BMSCs. The ROS accumulation in BMSCs was also suppressed by Nox2 blocking. Further study uncovered that Nox2 inhibitor caused the downregulation of p-p53, p21, p-FoxO1 and Bax, and the upregulation of anti-apoptotic protein Bcl-2. In vivo, Nox2 knockdown in grafted BMSCs led to the improvement of EF and FS in infarcted myocardium than BMSCs without Nox2 knockdown. Consistently, more retention and survival of BMSCs were found after Nox2 knockdown. Taken together, Nox2 inhibition enhances anti-aging and anti-apoptotic ability of BMSCs, and thus promotes survival and retention of BMSCs, which provides a new strategy for improving BMSCs-based therapy.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Infarto del Miocardio/tratamiento farmacológico , NADPH Oxidasa 2/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Médula Ósea/metabolismo , Células de la Médula Ósea/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Infarto del Miocardio/metabolismo , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
10.
Cell Physiol Biochem ; 47(3): 1287-1298, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29913449

RESUMEN

BACKGROUND/AIMS: Melatonin possesses many biological activities such as antioxidant and anti-aging. Cardiac progenitor cells (CPCs) have emerged as a promising therapeutic strategy for myocardial infarction (MI). However, the low survival of transplanted CPCs in infarcted myocardium limits the successful use in treating MI. In the present study, we aimed to investigate if melatonin protects against oxidative stress-induced CPCs damage and enhances its therapeutic efficacy for MI. METHODS: TUNEL assay and EdU assay were used to detect the effects of melatonin and miR-98 on H2O2-induced apoptosis and proliferation. MI model was used to evaluate the potential cardioprotective effects of melatonin and miR-98. RESULTS: Melatonin attenuated H2O2-induced the proliferation reduction and apoptosis of c-kit+ CPCs in vitro, and CPCs which pretreated with melatonin significantly improved the functions of post-infarct hearts compared with CPCs alone in vivo. Melatonin was capable to inhibit the increase of miR-98 level by H2O2 in CPCs. The proliferation reduction and apoptosis of CPCs induced by H2O2 was aggravated by miR-98. In vivo, transplantation of CPCs with miR-98 silencing caused the more significant improvement of cardiac functions in MI than CPCs. MiR-98 targets at the signal transducer and activator of the transcription 3 (STAT3), and thus aggravated H2O2-induced the reduction of Bcl-2 protein. CONCLUSIONS: Pre-treatment with melatonin protects c-kit+ CPCs against oxidative stress-induced damage via downregulation of miR-98 and thereby increasing STAT3, representing a potentially new strategy to improve CPC-based therapy for MI.


Asunto(s)
Melatonina/farmacología , Infarto del Miocardio/terapia , Miocardio/metabolismo , Trasplante de Células Madre , Células Madre/metabolismo , Aloinjertos , Animales , Ratones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/patología , Células Madre/patología
11.
Cell Physiol Biochem ; 41(1): 286-295, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28214881

RESUMEN

BACKGROUND/AIMS: It is well documented that myocardial hypertrophy is associated with low ambient temperature. Atorvastatin (Atv) has been shown to protect against atherosclerosis, cardiac fibrosis, ischemia/reperfusion injury, etc. In this study, we aim to determine whether atorvastatin is effective in the treatment of myocardial hypertrophy induced by cold exposure and to shed light on underlying mechanism. METHODS: The mice aged 4-week were randomized to Control (Ctl) group (raised at room temperature), Cold group (raised at 3-5ºC) and Atv treatment group (raised at 3-5ºC followed by 10mg/kg/day Atv infusion). Echocardiography (ECG), HE, TUNEL and Masson's trichrome staining, and Transmission electronic microscopy were performed to analyze cardiac function, myocardial hypertrophy, cardiac fibrosis, apoptosis and cardiomyocyte ultrastructure, respectively. Western blot was carried out to determine the involvement of MAPK and apoptosis pathways. RESULTS: Exposure of mice to low temperature induced myocardial hypertrophic growth characterized by the elevation of heart/body weight index and heart weight /tibia length index, compared with control mice. Atv treatment attenuated cardiac hypertrophy induced by cold exposure; Atv also attenuated the increase of cross-sectional area of cardiomyocytes and cardiac collagen content fraction in mice exposed to cold. ECG showed that the decline of cardiac functions including the elevated left ventricular systolic/diastolic internal dimension (LVIDs/d) and fractional shortening (FS) in mice with cold exposure was also inhibited by Atv treatment. Transmission electronic microscopy uncovered that Atv attenuated mitochondrial injury induced by cold exposure in mice. In addition, systolic blood pressure was gradually increased in mice exposed to cold temperature, and Atv treatment significantly inhibited the elevation of blood pressure in cold-treated mice. Mechanistically, mitogen-activated protein kinase (MAPK) signal was not altered in mice exposed to cold, and Atv did not affect MAPK signal in cold-treated mice. But Atv mitigated the reduction of Bcl-2/Bax level in heart of cold-treated mice. CONCLUSION: Atv attenuated myocardial hypertrophy induced by cold exposure through inhibiting the downregulation of Bcl-2 in heart. It may provide a novel strategy for low temperature-induced myocardial hypertrophy treatment.


Asunto(s)
Atorvastatina/farmacología , Cardiomegalia/etiología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Atorvastatina/uso terapéutico , Autofagia/efectos de los fármacos , Presión Sanguínea , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/patología , Frío , Regulación hacia Abajo/efectos de los fármacos , Ecocardiografía , Ventrículos Cardíacos/diagnóstico por imagen , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Ratones , Microscopía Electrónica de Transmisión , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Miocardio/metabolismo , Miocardio/patología , Miocardio/ultraestructura , Proteínas Proto-Oncogénicas c-bcl-2/genética , Transducción de Señal/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo
12.
Cell Physiol Biochem ; 43(1): 237-246, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28854417

RESUMEN

BACKGROUND/AIMS: Blue light emitting diodes (LEDs) have been proven to affect the growth of several types of cells. The effects of blue LEDs have not been tested on bone marrow-derived mesenchymal stem cells (BMSCs), which are important for cell-based therapy in various medical fields. Therefore, the aim of this study was to determine the effects of blue LED on the proliferation, apoptosis and osteogenic differentiation of BMSCs. METHODS: BMSCs were irradiated with a blue LED light at 470 nm for 1 min, 5 min, 10 min, 30 min and 60 min or not irradiated. Cell proliferation was measured by performing cell counting and EdU staining assays. Cell apoptosis was detected by TUNEL staining. Osteogenic differentiation was evaluated by ALP and ARS staining. DCFH-DA staining and γ-H2A.X immunostaining were used to measure intracellular levels of ROS production and DNA damage. RESULTS: Both cell counting and EdU staining assays showed that cell proliferation of BMSCs was significantly reduced upon blue LED irradiation. Furthermore, treatment of BMSCs with LED irradiation was followed by a remarkable increase in apoptosis, indicating that blue LED light induced toxic effects on BMSCs. Likewise, BMSC osteogenic differentiation was inhibited after exposure to blue LED irradiation. Further, blue LED irradiation was followed by the accumulation of ROS production and DNA damage. CONCLUSIONS: Taken together, our study demonstrated that blue LED light inhibited cell proliferation, inhibited osteogenic differentiation, and induced apoptosis in BMSCs, which are associated with increased ROS production and DNA damage. These findings may provide important insights for the application of LEDs in future BMSC-based therapies.


Asunto(s)
Apoptosis/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Luz , Animales , Células de la Médula Ósea/citología , Células Cultivadas , Daño del ADN/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo
13.
J Pineal Res ; 63(3)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28500782

RESUMEN

Bone marrow mesenchymal stem cells (BMSCs) are an expandable population of stem cells which can differentiate into osteoblasts, chondrocytes and adipocytes. Dysfunction of BMSCs in response to pathological stimuli contributes to bone diseases. Melatonin, a hormone secreted from pineal gland, has been proved to be an important mediator in bone formation and mineralization. The aim of this study was to investigate whether melatonin protected against iron overload-induced dysfunction of BMSCs and its underlying mechanisms. Here, we found that iron overload induced by ferric ammonium citrate (FAC) caused irregularly morphological changes and markedly reduced the viability in BMSCs. Consistently, osteogenic differentiation of BMSCs was significantly inhibited by iron overload, but melatonin treatment rescued osteogenic differentiation of BMSCs. Furthermore, exposure to FAC led to the senescence in BMSCs, which was attenuated by melatonin as well. Meanwhile, melatonin was able to counter the reduction in cell proliferation by iron overload in BMSCs. In addition, protective effects of melatonin on iron overload-induced dysfunction of BMSCs were abolished by its inhibitor luzindole. Also, melatonin protected BMSCs against iron overload-induced ROS accumulation and membrane potential depolarization. Further study uncovered that melatonin inhibited the upregulation of p53, ERK and p38 protein expressions in BMSCs with iron overload. Collectively, melatonin plays a protective role in iron overload-induced osteogenic differentiation dysfunction and senescence through blocking ROS accumulation and p53/ERK/p38 activation.


Asunto(s)
Células de la Médula Ósea/fisiología , Diferenciación Celular , Sobrecarga de Hierro/fisiopatología , Melatonina/fisiología , Células Madre Mesenquimatosas/fisiología , Adipogénesis , Animales , Proliferación Celular , Senescencia Celular , Compuestos Férricos , Complejo Hierro-Dextran , Sistema de Señalización de MAP Quinasas , Masculino , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Osteogénesis , Compuestos de Amonio Cuaternario , Especies Reactivas de Oxígeno/metabolismo , Triptaminas
14.
PLoS Genet ; 10(2): e1004177, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586203

RESUMEN

Whether epithelial-mesenchymal transition (EMT) is always linked to increased tumorigenicity is controversial. Through microRNA (miRNA) expression profiling of mammary epithelial cells overexpressing Twist, Snail or ZEB1, we identified miR-100 as a novel EMT inducer. Surprisingly, miR-100 inhibits the tumorigenicity, motility and invasiveness of mammary tumor cells, and is commonly downregulated in human breast cancer due to hypermethylation of its host gene MIR100HG. The EMT-inducing and tumor-suppressing effects of miR-100 are mediated by distinct targets. While miR-100 downregulates E-cadherin by targeting SMARCA5, a regulator of CDH1 promoter methylation, this miRNA suppresses tumorigenesis, cell movement and invasion in vitro and in vivo through direct targeting of HOXA1, a gene that is both oncogenic and pro-invasive, leading to repression of multiple HOXA1 downstream targets involved in oncogenesis and invasiveness. These findings provide a proof-of-principle that EMT and tumorigenicity are not always associated and that certain EMT inducers can inhibit tumorigenesis, migration and invasion.


Asunto(s)
Carcinogénesis/genética , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , MicroARNs/genética , Invasividad Neoplásica/genética , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Cadherinas/biosíntesis , Cadherinas/genética , Proteínas Cdh1/biosíntesis , Línea Celular Tumoral , Células Epiteliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Humanos , Ratones , Factores de Transcripción/biosíntesis
15.
Cell Physiol Biochem ; 39(4): 1369-79, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27607448

RESUMEN

BACKGROUND/AIMS: Bone marrow-derived mesenchymal stem cells (BMSCs) have the ability to differentiate into multilineage cells such as osteoblasts, chondrocytes, and cardiomyocytes. Dysfunction of BMSCs in response to pathological stimuli participates in the development of diseases such as osteoporosis. Astragalus polysaccharide (APS) is a major active ingredient of Astragalus membranaceus, a commonly used anti-aging herb in traditional Chinese medicine. The aim of this study was to investigate whether APS protects against iron overload-induced dysfunction of BMSCs and its underlying mechanisms. METHODS: BMSCs were exposed to ferric ammonium citrate (FAC) with or without different concentrations of APS. The viability and proliferation of BMSCs were assessed by CCK-8 assay and EdU staining. Cell apoptosis, senescence and pluripotency were examined utilizing TUNEL staining, ß-galactosidase staining and qRT-PCR respectively. The reactive oxygen species (ROS) level was assessed in BMSCs with a DCFH-DA probe and MitoSOX Red staining. RESULTS: Firstly, we found that iron overload induced by FAC markedly reduced the viability and proliferation of BMSCs, but treatment with APS at 10, 30 and 100 µg/mL was able to counter the reduction of cell proliferation. Furthermore, exposure to FAC led to apoptosis and senescence in BMSCs, which were partially attenuated by APS. The pluripotent genes Nanog, Sox2 and Oct4 were shown to be downregulated in BMSCs after FAC treatment, however APS inhibited the reduction of Nanog, Sox2 and Oct4 expression. Further study uncovered that APS treatment abrogated the increase of intracellular and mitochondrial ROS level in FAC-treated BMSCs. CONCLUSION: Treatment of BMSCs with APS to impede mitochondrial ROS accumulation can remarkably inhibit apoptosis, senescence, and the reduction of proliferation and pluripotency of BMSCs caused by FAC-induced iron overload.


Asunto(s)
Planta del Astrágalo/química , Compuestos Férricos/antagonistas & inhibidores , Células Madre Mesenquimatosas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Polisacáridos/farmacología , Compuestos de Amonio Cuaternario/antagonistas & inhibidores , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Compuestos Férricos/farmacología , Regulación de la Expresión Génica , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Polisacáridos/aislamiento & purificación , Cultivo Primario de Células , Compuestos de Amonio Cuaternario/farmacología , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal
16.
J Pineal Res ; 61(1): 82-95, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27062045

RESUMEN

Melatonin, a hormone secreted by the pineal gland, possesses multiple biological activities such as antitumor, antioxidant, and anti-ischemia. C-kit(+) cardiac progenitor cells (CPCs) have emerged as a promising tool for the treatment of heart diseases. However, the senescence of CPCs due to pathological stimuli leads to the decline of CPCs' functions and regenerative potential. This study was conducted to demonstrate whether melatonin antagonizes the senescence of CPCs in response to oxidative stress. Here, we found that the melatonin treatment markedly inhibited the senescent characteristics of CPCs after exposed to sublethal concentration of H2 O2 , including the increase in senescence-associated ß-galactosidase (SA-ß-gal)-positive CPCs, senescence-associated heterochromatin loci (SAHF), secretory IL-6 level, and the upregulation of p53 and p21 proteins. Senescence-associated proliferation reduction was also attenuated by melatonin in CPCs. Luzindole, the melatonin membrane receptor blocker, may block the melatonin-mediated suppression of premature senescence in CPCs. Interestingly, we found that long noncoding RNA H19 and its derived miR-675 were downregulated by H2 O2 in CPCs, but melatonin treatment could counter this alteration. Furthermore, knockdown of H19 or miR-675 blocked antisenescence actions of melatonin on H2 O2 -treated CPCs. It was further verified that H19-derived miR-675 targeted at the 3'UTR of USP10, which resulted in the downregulation of p53 and p21 proteins. In summary, melatonin antagonized premature senescence of CPCs via H19/miR-675/USP10 pathway, which provides new insights into pharmacological actions and potential applications of melatonin on the senescence of CPCs.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Melatonina/farmacología , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , ARN Largo no Codificante/metabolismo , Células Madre/metabolismo , Regiones no Traducidas 3' , Animales , Senescencia Celular/genética , Técnicas de Silenciamiento del Gen , Peróxido de Hidrógeno/farmacología , Melatonina/metabolismo , Ratones , MicroARNs/genética , Miocitos Cardíacos/citología , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , ARN Largo no Codificante/genética , Células Madre/citología , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
17.
Mol Carcinog ; 53(12): 1011-26, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24000122

RESUMEN

Metastatic dissemination is a multi-step process that depends on cancer cells' ability to respond to microenvironmental cues by adapting adhesion abilities and undergoing cytoskeletal rearrangement. Breast Cancer Metastasis Suppressor 1 (BRMS1) affects several steps of the metastatic cascade: it decreases survival in circulation, increases susceptibility to anoikis, and reduces capacity to colonize secondary organs. In this report, BRMS1 expression is shown to not significantly alter expression levels of integrin monomers, while time-lapse and confocal microscopy revealed that BRMS1-expressing cells exhibited reduced activation of both ß1 integrin and focal adhesion kinase, and decreased localization of these molecules to sites of focal adhesions. Short-term plating of BRMS1-expressing cells onto collagen or fibronectin markedly decreased cytoskeletal reorganization and formation of cellular adhesion projections. Under 3D culture conditions, BRMS1-expressing cells remained rounded and failed to reorganize their cytoskeleton and form invasive colonies. Taken together, BRMS1-expressing breast cancer cells are greatly attenuated in their ability to respond to microenvironment changes. © 2013 Wiley Periodicals, Inc.


Asunto(s)
Neoplasias de la Mama/genética , Adhesión Celular/genética , Metástasis de la Neoplasia/genética , Proteínas de Neoplasias/genética , Línea Celular Tumoral , Citoesqueleto/genética , Femenino , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Humanos , Integrina beta1/genética , Proteínas Represoras
18.
Sci Adv ; 10(26): eadn5229, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38924414

RESUMEN

There is a regional preference around lymph nodes (LNs) for adipose beiging. Here, we show that local LN removal within inguinal white adipose tissue (iWAT) greatly impairs cold-induced beiging, and this impairment can be restored by injecting M2 macrophages or macrophage-derived C-C motif chemokine (CCL22) into iWAT. CCL22 injection into iWAT effectively promotes iWAT beiging, while blocking CCL22 with antibodies can prevent it. Mechanistically, the CCL22 receptor, C-C motif chemokine receptor 4 (CCR4), within eosinophils and its downstream focal adhesion kinase/p65/interleukin-4 signaling are essential for CCL22-mediated beige adipocyte formation. Moreover, CCL22 levels are inversely correlated with body weight and fat mass in mice and humans. Acute elevation of CCL22 levels effectively prevents diet-induced body weight and fat gain by enhancing adipose beiging. Together, our data identify the CCL22-CCR4 axis as an essential mediator for LN-controlled adaptive thermogenesis and highlight its potential to combat obesity and its associated complications.


Asunto(s)
Tejido Adiposo Blanco , Quimiocina CCL22 , Metabolismo Energético , Ganglios Linfáticos , Macrófagos , Termogénesis , Animales , Femenino , Humanos , Masculino , Ratones , Adipocitos Beige/metabolismo , Tejido Adiposo Blanco/metabolismo , Quimiocina CCL22/metabolismo , Eosinófilos/metabolismo , Ganglios Linfáticos/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Obesidad/metabolismo , Receptores CCR4/metabolismo , Transducción de Señal
19.
Med Phys ; 50(3): 1905-1916, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36639958

RESUMEN

PURPOSE: Early screening is crucial to improve the survival rate and recovery rate of lung cancer patients. Computer-aided diagnosis system (CAD) is a powerful tool to assist clinicians in early diagnosis. Lung nodules are characterized by spatial heterogeneity. However, many attempts use the two-dimensional multi-view (MV) framework to learn and simply integrate multiple view features. These methods suffer from the problems of not capturing the spatial characteristics effectively and ignoring the variability of multiple views. In this paper, we propose a three-dimensional MV convolutional neural network (3D MVCNN) framework and embed the squeeze-and-excitation (SE) module in it to further address the variability of each view in the MV framework. METHODS: First, the 3D multiple view samples of lung nodules are extracted by the spatial sampling method, and a 3D CNN is established to extract 3D abstract features. Second, build a 3D MVCNN framework according to the 3D multiple view samples and 3D CNN. This framework can learn more features of different views of lung nodules, taking into account the characteristics of spatial heterogeneity of lung nodules. Finally, to further address the variability of each view in the MV framework, a 3D MVSECNN model is constructed by introducing a SE module in the feature fusion stage. For training and testing purposes we used independent subsets of the public LIDC-IDRI dataset. RESULTS: For the LIDC-IDRI dataset, this study achieved 96.04% accuracy and 98.59% sensitivity in the binary classification, and 87.76% accuracy in the ternary classification, which was higher than other state-of-the-art studies. The consistency score of 0.948 between the model predictions and pathological diagnosis was significantly higher than that between the clinician's annotations and pathological diagnosis. CONCLUSIONS: The results show that our proposed method can effectively learn the spatial heterogeneity of nodules and solve the problem of multiple view variability. Moreover, the consistency analysis indicates that our method can provide clinicians with more accurate results of benign-malignant lung nodule classification for auxiliary diagnosis, which is important for assisting clinicians in clinical diagnosis.


Asunto(s)
Neoplasias Pulmonares , Nódulo Pulmonar Solitario , Humanos , Tomografía Computarizada por Rayos X/métodos , Redes Neurales de la Computación , Neoplasias Pulmonares/diagnóstico por imagen , Imagenología Tridimensional/métodos , Pulmón , Nódulo Pulmonar Solitario/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
20.
Cardiovasc Res ; 119(10): 1997-2013, 2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37267414

RESUMEN

AIMS: Novel cancer therapies leading to increased survivorship of cancer patients have been negated by a concomitant rise in cancer therapies-related cardiovascular toxicities. Sunitinib, a first line multi-receptor tyrosine kinase inhibitor, has been reported to cause vascular dysfunction although the initiating mechanisms contributing to this side effect remain unknown. Long non-coding RNAs (lncRNAs) are emerging regulators of biological processes in endothelial cells (ECs); however, their roles in cancer therapies-related vascular toxicities remain underexplored. METHODS AND RESULTS: We performed lncRNA expression profiling to identify potential lncRNAs that are dysregulated in human-induced pluripotent stem cell-derived ECs (iPSC-ECs) treated with sunitinib. We show that the lncRNA hyaluronan synthase 2 antisense 1 (HAS2-AS1) is significantly diminished in sunitinib-treated iPSC-ECs. Sunitinib was found to down-regulate HAS2-AS1 by an epigenetic mechanism involving hypermethylation. Depletion of HAS2-AS1 recapitulated sunitinib-induced detrimental effects on iPSC-ECs, whereas CRISPR-mediated activation of HAS2-AS1 reversed sunitinib-induced dysfunction. We confirmed that HAS2-AS1 stabilizes the expression of its sense gene HAS2 via an RNA/mRNA heteroduplex formation. Knockdown of HAS2-AS1 led to reduced synthesis of hyaluronic acid (HA) and up-regulation of ADAMTS5, an enzyme involved in extracellular matrix degradation, resulting in disruption of the endothelial glycocalyx which is critical for ECs. In vivo, sunitinib-treated mice showed reduced coronary flow reserve, accompanied by a reduction in Has2os and degradation of the endothelial glycocalyx. Finally, we identified that treatment with high molecular-weight HA can prevent the deleterious effects of sunitinib both in vitro and in vivo by preserving the endothelial glycocalyx. CONCLUSIONS: Our findings highlight the importance of lncRNA-mediated regulation of the endothelial glycocalyx as an important determinant of sunitinib-induced vascular toxicity and reveal potential novel therapeutic avenues to attenuate sunitinib-induced vascular dysfunction.


Asunto(s)
ARN Largo no Codificante , Humanos , Animales , Ratones , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Glicocálix/metabolismo , Células Endoteliales/metabolismo , Sunitinib/toxicidad , Sunitinib/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA