Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Biochem J ; 479(24): 2511-2527, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36504127

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa is one of leading causes of disability and mortality worldwide and the world health organisation has listed it with the highest priority for the need of new antimicrobial therapies. P. aeruginosa strains responsible for the poorest clinical outcomes express either ExoS or ExoU, which are injected into target host cells via the type III secretion system (T3SS). ExoS is a bifunctional cytotoxin that promotes intracellular survival of invasive P. aeruginosa by preventing targeting of the bacteria to acidified intracellular compartments. ExoU is a phospholipase which causes destruction of host cell plasma membranes, leading to acute tissue damage and bacterial dissemination. Fluoroquinolones are usually employed as a first line of therapy as they have been shown to be more active against P. aeruginosa in vitrothan other antimicrobial classes. Their overuse over the past decade, however, has resulted in the emergence of antibiotic resistance. In certain clinical situations, aminoglycosides have been shown to be more effective then fluoroquinolones, despite their reduced potency towards P. aeruginosa in vitro. In this study, we evaluated the effects of fluoroquinolones (moxifloxacin and ciprofloxacin) and aminoglycosides (tobramycin and gentamycin) on T3SS expression and toxicity, in corneal epithelial cell infection models. We discovered that tobramycin disrupted T3SS expression and reduced both ExoS and ExoU mediated cytotoxicity, protecting infected HCE-t cells at concentrations below the minimal inhibitory concentration (MIC). The fluoroquinolones moxifloxacin and ciprofloxacin, however, up-regulated the T3SS and did not inhibit and may have increased the cytotoxic effects of ExoS and ExoU.


Asunto(s)
Antiinfecciosos , Infecciones por Pseudomonas , Humanos , Fluoroquinolonas/farmacología , Fluoroquinolonas/metabolismo , Fluoroquinolonas/uso terapéutico , Aminoglicósidos/farmacología , Pseudomonas aeruginosa , Factores de Virulencia/metabolismo , Moxifloxacino/farmacología , Genotipo , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , ADP Ribosa Transferasas/genética , Antibacterianos/metabolismo , Tobramicina/metabolismo , Tobramicina/farmacología , Ciprofloxacina/metabolismo , Ciprofloxacina/farmacología , Antiinfecciosos/farmacología , Proteínas Bacterianas/metabolismo
2.
Biochem J ; 478(3): 647-668, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33459338

RESUMEN

Pseudomonas aeruginosa has recently been highlighted by the World Health Organisation (WHO) as a major threat with high priority for the development of new therapies. In severe P. aeruginosa infections, the phospholipase activity of the type 3 secretion system toxin, ExoU, induces lysis of target host cells and results in the poorest clinical outcomes. We have developed an integrated pipeline to evaluate small molecule inhibitors of ExoU in vitro and in cultured cell models, including a disease-relevant corneal epithelial (HCE-T) scratch and infection model using florescence microscopy and cell viability assays. Compounds Pseudolipasin A, compound A and compound B were effective in vitro inhibitors of ExoU and mitigated P. aeruginosa ExoU-dependent cytotoxicity after infection of HCE-T cells at concentrations as low as 0.5 µM. Addition of the antimicrobial moxifloxacin controlled bacterial load, allowing these assays to be extended from 6 h to 24 h. P. aeruginosa remained cytotoxic to HCE-T cells with moxifloxacin, present at the minimal inhibitory concentration for 24 h, but, when used in combination with either Pseudolipasin A, compound A or compound B, a greater amount of viable cells and scratch healing were observed. Thus, our pipeline provides evidence that ExoU inhibitors could be used in combination with certain antimicrobials as a novel means to treat infections due to ExoU producing P. aeruginosa, as well as the means to identify more potent ExoU inhibitors for future therapeutics.


Asunto(s)
Antibacterianos/farmacología , Evaluación Preclínica de Medicamentos/métodos , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Células Cultivadas , Sinergismo Farmacológico , Células Epiteliales , Epitelio Corneal/citología , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Moxifloxacino/farmacología , Conformación Proteica , Proteínas Recombinantes/efectos de los fármacos , Transfección
4.
Microorganisms ; 7(12)2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31888268

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa employs the type III secretion system (T3SS) and four effector proteins, ExoS, ExoT, ExoU, and ExoY, to disrupt cellular physiology and subvert the host's innate immune response. Of the effector proteins delivered by the T3SS, ExoU is the most toxic. In P. aeruginosa infections, where the ExoU gene is expressed, disease severity is increased with poorer prognoses. This is considered to be due to the rapid and irreversible damage exerted by the phospholipase activity of ExoU, which cannot be halted before conventional antibiotics can successfully eliminate the pathogen. This review will discuss what is currently known about ExoU and explore its potential as a therapeutic target, highlighting some of the small molecule ExoU inhibitors that have been discovered from screening approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA