Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 93(13): 5459-5467, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33755444

RESUMEN

An effective signal amplification strategy is essential to enhance the analytical performance of microfluidic paper-based analytical devices (µPADs) for tracing biomarkers. Here, a simple but efficient approach with superior electrocatalytic performance of Pd@hollow Zn/Co core-shell ZIF67/ZIF8 nanoparticles for regulating the efficacious signal amplification process was utilized to realize the detection of prostate-specific antigen (PSA). By rationally designing the core-shell structure of ZIF67/ZIF8 with hollow characteristics on the nanoscale and introducing the noble metal element Pd into the cavity, the diffusion limitation and porous confinement reduction of the obtained nanomaterials with uniform morphology and satisfactory chemical stability could be realized, which endowed it with better catalytic performance than solid metal-organic frameworks (MOFs) and ensured effective signal amplification of H2O2 reduction for achieving enhanced electrochemical signals. Moreover, with the assistance of signal probes, the remaining H2O2 could flow to the color area to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine to form a colored product by changing the spatial configuration of the µPAD, thus realizing the visual detection of PSA. On the basis of this novel analytical device, dual-mode ultrasensitive detection of PSA could be achieved with a lower limit of detection of 0.78 pg/mL (S/N = 3) and a wider linear range from 5 pg/mL to 50 ng/mL. This work provided the opportunity of introducing the noble metal element Pd into the cavity of the MOF hollow structure to improve its electrocatalytic efficiency and construct a high-performance µPAD for clinical detection of other biomarkers.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Técnicas Electroquímicas , Humanos , Peróxido de Hidrógeno , Inmunoensayo , Límite de Detección , Masculino , Microfluídica , Antígeno Prostático Específico , Zinc
2.
Nanotechnology ; 31(21): 215602, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31995529

RESUMEN

In this paper, Co3Se4 nanoparticles embedded in nitrogen-doped porous carbon polyhedra are synthesized via a facile one-step thermal selenization, using zeolitic imidazolate framework-67 (ZIF-67) as the template. The electrochemical properties of the fabricated nanocomposite are evaluated for use as anodes for lithium ion batteries and found to exhibit a specific capacity (950 mAh g-1 at 0.2 C) and excellent cyclic stability (899 mAh g-1 at 1 C after 1000 cycles). Both are much higher than those of the state-of-the-art Co-Se based nanocomposites. This extraordinary lithium storage is attributed to the synergetic effect between the Co3Se4 nanocrystals and nitrogen-doped porous carbon framework, and is believed to offer a potential candidate anode material for next-generation lithium ion batteries.

3.
Small ; 13(10)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28026122

RESUMEN

In this paper, single crystalline copper nanowires (CuNWs) have been electrochemically grown through anodic aluminum oxide template. The environmental stability of the as-obtained CuNWs in both 40% relative humidity (RH) atmosphere and 0.1 m NaOH aqueous solution has been subsequently studied. In 40% RH atmosphere, a uniform compact Cu2 O layer is formed as a function of exposure time following the logarithmic law and epitaxially covers the CuNW surfaces. It is also found that the oxide layers on CuNWs are sequentially grown when subjected to the cyclic voltammetry measurement in 0.1 m NaOH solution. An epitaxially homogeneous Cu2 O layer is initially formed over the surface of the CuNW substrates by solid-state reaction (SSR). Subsequently, the conversion of Cu2 O into epitaxial CuO based on the SSR takes place with the increase of applied potential. This CuO layer is partially dissolved in the solution forming Cu(OH)2 , which then redeposited on the CuNW surfaces (i.e., dissolution-redeposition (DR) process) giving rise to a mixed polycrystalline CuO/Cu(OH)2 layer. The further increase of applied potential allows the complete oxidation of Cu2 O into CuO to form a dual-layer structure (i.e., CuO inner layer and Cu(OH)2 outer layer) with random orientations through an enhanced DR process.

4.
Biosensors (Basel) ; 13(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36671939

RESUMEN

A dual-mode lab-on-paper device based on BiVO4/FeOOH nanocomposites as an efficient generating photoelectrochemical (PEC)/colorimetric signal reporter has been successfully constructed by integration of the lab-on-paper sensing platform and PEC/colorimetric detection technologies for sensitive detection of carcinoembryonic antigen (CEA). Concretely, the BiVO4/FeOOH nanocomposites were in situ synthesized onto the paper-working electrode (PWE) through hydrothermal synthesis of the BiVO4 layer on cellulose fibers (paper-based BiVO4) which were initially modified by Au nanoparticles for improving the conductivity of three dimensional PWE, and then the photo-electrodeposition of FeOOH onto the paper-based BiVO4 to construct the paper-based BiVO4/FeOOH for the portable dual-mode lab-on-paper device. The obtained nanocomposites with an FeOOH needle-like structure deposited on the BiVO4 layer exhibits enhanced PEC response activity due to its effective separation of the electron-hole pair which could further accelerate the PEC conversion efficiency during the sensing process. With the introduction of CEA targets onto the surface of nanocomposite-modified PWE assisted by the interaction with the CEA antibody from a specific recognition property, a signal-off PEC signal state with a remarkable photocurrent response decreasing trend can be achieved, realizing the quantitative detection of CEA with the PEC signal readout mode. By means of a smart origami paper folding, the colorimetric signal readout is achieved by catalyzing 3,3',5,5'-tetramethylbenzidine (TMB) to generate blue oxidized TMB in the presence of H2O2 due to the satisfied enzyme-like catalytic activity of the needle-like structure, FeOOH, thereby achieving the dual-mode signal readout system for the proposed lab-on-paper device. Under the optimal conditions, the PEC and colorimetric signals measurement were effectively carried out, and the corresponding linear ranges were 0.001-200 ng·mL-1 and 0.5-100 ng·mL-1 separately, with the limit of detection of 0.0008 and 0.013 ng·mL-1 for each dual-mode. The prepared lab-on-paper device also presented a successful application in serum samples for the detection of CEA, providing a potential pathway for the sensitive detection of target biomarkers in clinical application.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanocompuestos , Nanopartículas del Metal/química , Antígeno Carcinoembrionario , Oro/química , Peróxido de Hidrógeno , Colorimetría , Nanocompuestos/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Límite de Detección
5.
Chem Asian J ; 18(13): e202300263, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37211540

RESUMEN

Exploring efficient cocatalysts capable of accelerating surface catalytic reaction is of great significance for the development of solar-driven hydrogen production. Herein, on the basis of NiFe hydroxide, we developed a series of Pt doped NiFe-based cocatalysts to promote the photocatalytic hydrogen production of graphitic carbon nitride (g-C3 N4 ). We find that the Pt doping can trigger phase reconstruction of NiFe hydroxide and lead to the formation of NiFe bicarbonate, which displays higher catalytic activity toward hydrogen evolution reaction (HER). The Pt doped NiFe bicarbonate modified g-C3 N4 shows excellent photocatalytic activity with H2 evolution rate up to 100 µmol/h, which is more than 300 times that of pristine g-C3 N4 . The experimental and calculation results demonstrate that the greatly improved photocatalytic HER activity of g-C3 N4 is not only due to the efficient carrier separation, but also attributed to the accelerated HER kinetics. Our work may provide guidance for designing novel and superior photocatalysts.

6.
J Mater Chem B ; 10(21): 4031-4039, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35506741

RESUMEN

In this work, novel dual-mode lab-on-paper devices based on in situ grown WO3/BiVO4 heterojunctions onto cellulose fibers, as signal amplification probes, were successfully fabricated by the integration of photoelectrochemical (PEC)/colorimetric analysis technologies into a paper sensing platform for the ultrasensitive detection of alpha-fetoprotein (AFP). Specifically, to achieve an impressive PEC performance of the lab-on-paper device, the WO3/BiVO4 heterojunction was in situ grown onto the surface of cellulose fibers assisted with Au nanoparticle (Au NP) functionalization for enhancing the conductivity of the working zone of the device. With the target concentration increased, more immune conjugates could be captured by the proposed paper photoelectrode, which could lead to a quantitative decrease in the photocurrent intensity, eventually realizing the accurate PEC signal readout. To meet the requirement of end-user application, a colorimetric signal readout system was designed for the lab-on-paper device based on the color reaction of 3,3'5,5'-tetramethylbenzidine (TMB) oxidized by WO3/BiVO4 nanoflowers in the presence of H2O2. Noticeably, it is the first time that the WO3/BiVO4 heterojunction is in situ grown onto cellulose fibers, which enhances the sensitivity in view of both their PEC activity and catalytic ability. By controlling the conversion process of hydrophobicity and hydrophilicity on the lab-on-paper device combined with diverse origami methods, the dual-mode PEC/colorimetric signal output for the ultrasensitive AFP detection was realized. Under optimal conditions, the proposed dual-mode lab-on-paper device could enable the sensitive PEC/colorimetric diagnosis of AFP in the linear range of 0.09-100 ng mL-1 and 5-100 ng mL-1 with the limit of detection of 0.03 and 1.47 ng mL-1, respectively.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Técnicas Biosensibles/métodos , Celulosa , Colorimetría/métodos , Técnicas Electroquímicas/métodos , Oro , Peróxido de Hidrógeno , alfa-Fetoproteínas
7.
Biosensors (Basel) ; 12(10)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36290955

RESUMEN

Nowadays, developing a cost-effective, easy-to-operate, and efficient signal amplification platform is of important to microfluidic paper-based analytical devices (µPAD) for end-use markets of point-of-care (POC) assay applications. Herein, an ultrasensitive, paper-based photoelectrochemical (PEC) bioassay platform is constructed by in situ grown ZnO/ZnIn2S4 heterojunctions onto paper fibers, which acted as photoactive signal amplification probes for enhancing the sensitivity of antibodies-based diagnostic assays, for the sensitive detection of alpha-fetoprotein (AFP) targets. The crystalline flake-like ZnIn2S4 composited with hexagonal nanorods (NRs) morphology of ZnO is an in situ grown, at the first time, onto cellulose fibers surface supported with Au nanoparticle (Au NP) modification to improve conductivity of the device working zone. The obtained composites on paper fibers are implemented as a flexible paper-based photoelectrode to realize remarkable performance of the fabricated µPAD, resulting from the enhanced PEC activity of heterojunctions with effective electron-hole pair separation for accelerating photoelectric conversion efficiency of the sensing process under light irradiation. Once the target AFP was introduced into the biosensing interface assistant, with a specific recognition interaction of AFP antibody, a drastically photocurrent response was generated, in view of the apparent steric effects. With the concentration increase of AFP targets, more immune conjugates could be confined onto the biosensing interface, eventually leading to the quantitative decrease of photocurrent intensity. Combined with an ingenious origami design and permitting the hydrophobic/hydrophilic conversion procedure in the bioassay process, the ultrasensitive PEC detection of AFP targets was realized. Under the optimized conditions, the level of AFP could be sensitively tracked by the prepared µPAD with a liner range from 0.1 to 100 ng mL-1 and limit of detection of 0.03 ng mL-1. This work provides a great potential application for highly selective and sensitive POC testing of AFP, and finally, developments for clinical disease diagnosis.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Óxido de Zinc , alfa-Fetoproteínas , Óxido de Zinc/química , Oro/química , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Nanopartículas del Metal/química , Celulosa , Límite de Detección
8.
Chem Commun (Camb) ; 58(92): 12859-12862, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36317636

RESUMEN

Herein, V-doped cobalt hydroxides grown on carbon cloth (V-Co(OH)2/CC) were prepared via hydrothermal method. The incorporation of V can trigger phase transition and tune the local electronic structure of Co(OH)2, thereby improving the intrinsic alkaline HER activity. We find that the V-Co(OH)2 dominated by ß-Co(OH)2 exhibits excellent HER activity with only 83 mV overpotential at a current density of 10 mA cm-2, which outperforms most reported hydroxide-based catalysts and even surpasses the commercial Pt/C at large current density (>160 mA cm-2).

9.
ACS Appl Mater Interfaces ; 13(29): 33937-33947, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34279896

RESUMEN

In this work, we fabricated a novel origami paper-based analytical device (oPAD) assisted by the nanostructuring effect of in situ Pd decoration of Cu/Co-doped CeO2 (CuCo-CeO2-Pd) nanospheres, functionalized with their strongly enhanced electrocatalytic properties to realize an electrochemical and visual signal readout system in oPAD, for highly sensitive detection of amyloid-ß (Aß). The CuCo-CeO2-Pd nanospheres were introduced as an enhanced "signal transducer layer" on account of the electron transfer acceleration caused by catalyzing glucose to produce H2O2 for differential pulse voltammetry signal readout and further 3,3'5,5'-tetramethylbenzidine (TMB) oxidation for colorimetric analysis. Meanwhile, for achieving superior performance of the proposed oPAD, in situ growth of urchin-like gold nanoparticles (Au NPs) onto cellulose fibers was adopted to improve "the recognition layer" in favor of immobilizing antibodies for targeting Aß through specific antigen-antibody interactions. Combined with the delicate design of oPAD, exhibiting actuation of the conversion procedure between hydrophobicity and hydrophilicity on paper tabs in the assay process, the oPAD successfully enabled sensitive diagnosis of Aß in a linear range from 1.0 pM to 100 nM with a limit of detection of 0.05 pM (S/N = 3) for electrochemical detection, providing a reliable strategy for quantifying the Aß protein in clinical applications.


Asunto(s)
Péptidos beta-Amiloides/análisis , Técnicas Electroquímicas/instrumentación , Nanopartículas del Metal/química , Papel , Péptidos beta-Amiloides/sangre , Péptidos beta-Amiloides/líquido cefalorraquídeo , Bencidinas/química , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Catálisis , Cerio/química , Compuestos Cromogénicos/química , Técnicas Electroquímicas/métodos , Glucosa Oxidasa/química , Oro/química , Límite de Detección , Nanosferas/química , Oxidación-Reducción , Paladio/química , Reproducibilidad de los Resultados
10.
ACS Appl Mater Interfaces ; 13(28): 32780-32789, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34228452

RESUMEN

An effective dual-mode microfluidic paper-based analysis device (µPAD) was proposed via Bi2S3@MoS2 nanoflowers combined with octahedral CeO2 for ultrasensitive miRNA-141 bioassay. To obtain the amplified electrochemical signal, Bi2S3@MoS2 nanoflowers were first in situ grown onto the surface of cellulose fibers to promote the reduction of H2O2. The prism-anchored octahedral CeO2 nanoparticles with a great catalytic function on the reduction of H2O2 were linked up to the functionalized cellulose fibers through the hybridization chain reaction to further enhance the electrochemical signal. By means of the catalysis effect of Bi2S3@MoS2 nanoflowers and octahedral CeO2 nanoparticles, the obtained signal was amplified, thereby achieving ultrasensitive electrochemical detection of the target. With the help of duplex specific nuclease, the octahedral CeO2 could be released from the electrochemical detection area and flow to the color channel through capillary action, which could initiate the oxidation reaction of 3,3',5,5'-tetramethylbenzidine in the existence of H2O2 to generate a blue visual band, avoiding the error of distinguishing color depth caused by the naked eye and thus improving the accuracy of the visual method. Under the optimal conditions, satisfactory prediction and accurate detection performance were achieved in the range of 10 fM-1 nM and 0.5 fM-1 nM, respectively, by measuring the length of the blue product and the electrochemical signal intensity. The electrochemical/visual detection limits of the proposed µPAD for miRNA-141 were as low as 0.12 and 2.65 fM (S/N = 3). This work provides great potential for the construction of low-cost and high-performance dual-mode biosensors for the detection of biomarkers.

11.
Nanoscale ; 10(4): 1774-1778, 2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29308819

RESUMEN

Structure and phase modulations allow the development of highly active, cost-effective and stable electrocatalysts for the hydrogen evolution reaction (HER) but are rather challenging. In this paper, Zn-Co-S hollow/porous polyhedra with controllable phases were fabricated via solvent-based sulfidation at room temperature followed by thermal annealing. The obtained hollow structure Zn-Co-S-300 with an amorphous phase exhibits excellent electrocatalytic HER activity, which is higher than crystalline Zn-Co sulfides annealed at a higher temperature. Zn-Co-S-300 also shows a long-term working stability (91.7% current density retention over 10 hours) in alkaline media. This work provides a feasible approach for the fabrication of homogeneous ternary transition metal sulfide (TMS) electrocatalysts via the Kirkendall effect towards high-efficiency HER applications.

12.
ACS Appl Mater Interfaces ; 10(28): 23807-23812, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-29938486

RESUMEN

Adoption of bare metal oxides as catalytic materials shows inferior electrochemical activity because of their poor electrical conductivity. Although synthetic strategies for the employment of conductive substrates are well-established, the rational design and fabrication of hollow metal oxides nanostructures on the robust matrix with a high surface area and conductivity remains challenging. In the present research work, a strategy that transforms a metal-organic framework thin layer into a nanostructured CuO/C hollow shell to coat on the 3D nano-dendritic Cu foams as an electrode was successfully developed. This electrode is claimed to provide an extraordinary electrocatalysis for oxygen evolution reaction (OER) in alkaline media. The hierarchical complex presents fast electronic transmission networks and rich redox sites, leading to the significant enhancement in electrocatalytic OER efficiency. Furthermore, the spherical porous structure and robust architecture facilitate the high-speed diffusion of O2 bubbles in a long-term operation. The results of this study may serve as a reference for the designing of novel class 3D metal/metal oxide hierarchical structures for gas-involved (i.e., O2, H2, and CO2) electrocatalytic applications and beyond.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA