Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(35): 24230-24239, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28848987

RESUMEN

There is great interest in developing promising candidate materials for high-capacity, low cost, environmentally friendly, longer cycle life anodes for lithium ion batteries. Due to better Li adsorption properties than graphene, boron doped graphene has been considered to be an attractive anode material for Li-ion batteries. Using first principles density functional theory calculations, we investigate the effect of increasing boron concentration on the gravimetric capacity of monolayered boron doped carbon sheets. The calculations are performed for uniformly boron doped carbon sheets, BCx (x = 7, 5, 3, 2 and 1) as well as their non-uniformly doped counterparts, which are found to be energetically preferable for x = 5, 2 and 1. Our results indicate pronounced enhancement in gravimetric capacity with increasing concentration of B, up to x = 2. The storage capacity of the uniformly doped BC2 turns out to be the highest ever reported for B doped graphene sheets, which is 1.9 times (1667 mA h g-1) that of the previously reported value for BC3 (J. Phys. Chem. Lett., 2013, 4, 1737-1742). This dramatic increase in the capacity of uniformly doped BC2 occurs because of the availability of significantly more empty states above the Fermi level compared to the other BCx sheets. Moreover, the diffusion energy barriers and open circuit voltage are found to be lower in uniformly doped BC2, leading to better Li kinetics. For x = 1, Li binds very strongly to the uniformly doped BC and higher diffusion energy barriers are found for non-uniformly doped BC, rendering them ineffective as anode materials. Our study reveals that BC2 is the most promising candidate as an anode material for Li ion batteries owing to its high Li storage capacity combined with low diffusion barrier and low open circuit voltage.

2.
Phys Chem Chem Phys ; 16(31): 16502-8, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-24986702

RESUMEN

Graphene with large surface area and robust structure has been proposed as a high storage capacity anode material for Li ion batteries. While the inertness of pristine graphene leads to better Li kinetics, poor adsorption leads to Li clustering, significantly affecting the performance of the battery. Here, we show the role of defects and doping in achieving enhanced adsorption without compromising on the high diffusivity of Li. Using first principles density functional theory (DFT) calculations, we carry out a comprehensive study of diffusion kinetics of Li over the plane of the defective structures and calculate the change in the number of Li atoms in the vicinity of defects, with respect to pristine graphene. Our results show that the Li-C interaction, storage capacity and the energy barriers depend sensitively on the type of defects. The un-doped and boron doped mono-vacancy, doped di-vacancy up to two boron, one nitrogen doped di-vacancy, and Stone-Wales defects show low energy barriers that are comparable to pristine graphene. Furthermore, boron doping at mono-vacancy enhances the adsorption of Li. In particular, the two boron doped mono-vacancy graphene shows both a low energy barrier of 0.31 eV and better adsorption, and hence can be considered as a potential candidate for anode material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA