Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Molecules ; 27(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36144606

RESUMEN

BACKGROUND: Mito-metformin10 (MM10), synthesized by attaching a triphenylphosphonium cationic moiety via a 10-carbon aliphatic side chain to metformin, is a mitochondria-targeted analog of metformin that was recently demonstrated to alter mitochondrial function and proliferation in pancreatic ductal adenocarcinoma. Here, we hypothesized that this compound may decrease the oxygen consumption rate (OCR) in prostate cancer cells, increase the level of mitochondrial ROS, alleviate tumor hypoxia, and radiosensitize tumors. METHODS: OCR and mitochondrial superoxide production were assessed by EPR (9 GHz) in vitro in PC-3 and DU-145 prostate cancer cells. Reduced and oxidized glutathione were assessed before and after MM10 exposure. Tumor oxygenation was measured in vivo using 1 GHz EPR oximetry in PC-3 tumor model. Tumors were irradiated at the time of maximal reoxygenation. RESULTS: 24-hours exposure to MM10 significantly decreased the OCR of PC-3 and DU-145 cancer cells. An increase in mitochondrial superoxide levels was observed in PC-3 but not in DU-145 cancer cells, an observation consistent with the differences observed in glutathione levels in both cancer cell lines. In vivo, the tumor oxygenation significantly increased in the PC-3 model (daily injection of 2 mg/kg MM10) 48 and 72 h after initiation of the treatment. Despite the significant effect on tumor hypoxia, MM10 combined to irradiation did not increase the tumor growth delay compared to the irradiation alone. CONCLUSIONS: MM10 altered the OCR in prostate cancer cells. The effect of MM10 on the superoxide level was dependent on the antioxidant capacity of cell line. In vivo, MM10 alleviated tumor hypoxia, yet without consequence in terms of response to irradiation.


Asunto(s)
Metformina , Neoplasias Pancreáticas , Neoplasias de la Próstata , Antioxidantes/farmacología , Carbono/metabolismo , Línea Celular Tumoral , Disulfuro de Glutatión/metabolismo , Humanos , Masculino , Metformina/farmacología , Mitocondrias/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias de la Próstata/patología , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo
2.
J Biol Chem ; 293(26): 10363-10380, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29739855

RESUMEN

Reactive oxygen and nitrogen species (ROS/RNS) such as superoxide (O2̇̄), hydrogen peroxide, lipid hydroperoxides, peroxynitrite, and hypochlorous and hypobromous acids play a key role in many pathophysiological processes. Recent studies have focused on mitochondrial ROS as redox signaling species responsible for promoting cell division, modulating and regulating kinases and phosphatases, and activating transcription factors. Many ROS also stimulate cell death and senescence. The extent to which these processes occur is attributed to ROS levels (low or high) in cells. However, the exact nature of ROS remains unknown. Investigators have used redox-active probes that, upon oxidation by ROS, yield products exhibiting fluorescence, chemiluminescence, or bioluminescence. Mitochondria-targeted probes can be used to detect ROS generated in mitochondria. However, because most of these redox-active probes (untargeted and mitochondria-targeted) are oxidized by several ROS species, attributing redox probe oxidation to specific ROS species is difficult. It is conceivable that redox-active probes are oxidized in common one-electron oxidation pathways, resulting in a radical intermediate that either reacts with another oxidant (including oxygen to produce O2̇̄) and forms a stable fluorescent product or reacts with O2̇̄ to form a fluorescent marker product. Here, we propose the use of multiple probes and complementary techniques (HPLC, LC-MS, redox blotting, and EPR) and the measurement of intracellular probe uptake and specific marker products to identify specific ROS generated in cells. The low-temperature EPR technique developed to investigate cellular/mitochondrial oxidants can easily be extended to animal and human tissues.


Asunto(s)
Mitocondrias/metabolismo , Técnicas de Sonda Molecular , Especies Reactivas de Oxígeno/metabolismo , Aconitato Hidratasa/metabolismo , Línea Celular , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Metabolismo Energético/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Humanos , Mitocondrias/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Superóxidos/metabolismo
3.
Analyst ; 144(14): 4194-4203, 2019 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-31180410

RESUMEN

The generation of superoxide radical anion in biological systems is one of the major initiating events in the redox biology of NADPH oxidases and mitochondrial redox signalling. However, the pallette of chemical tools for superoxide detection is very limited, hampering progress in understanding the chemical biology of superoxide. Although EPR spin trapping is regarded as the most rigorous technique for superoxide detection, rapid reduction of the EPR-active superoxide spin adducts to EPR-silent hydroxylamines, or to hydroxyl radical adducts by bioreductants, significantly limits the applicability of this technique in biological systems. To overcome these limitations, in this work, we report the synthesis and characterization of a new mesoporous silica functionalized with a phosphorylated cyclic spin trap (DIPPMPO nitrone). The DIPPMPO-grafted silica is a versatile spin-trap agent enabling the identification of a wide range of carbon or oxygen-centered transient radicals in organic and in aqueous media. Moreover, superoxide was efficiently trapped under in vitro conditions in both cell-free and cellular systems. The generated superoxide adduct exhibited an exceptional half-life of 3.5 h and a resistance toward bioreductant agents such as glutathione for several hours.

4.
Chem Rev ; 117(15): 10043-10120, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28654243

RESUMEN

Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.


Asunto(s)
Antineoplásicos/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Compuestos Organofosforados/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Compuestos Organofosforados/síntesis química , Compuestos Organofosforados/química
5.
J Biol Chem ; 291(13): 7029-44, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-26839313

RESUMEN

Using high throughput screening-compatible assays for superoxide and hydrogen peroxide, we identified potential inhibitors of the NADPH oxidase (Nox2) isoform from a small library of bioactive compounds. By using multiple probes (hydroethidine, hydropropidine, Amplex Red, and coumarin boronate) with well defined redox chemistry that form highly diagnostic marker products upon reaction with superoxide (O2 (̇̄)), hydrogen peroxide (H2O2), and peroxynitrite (ONOO(-)), the number of false positives was greatly decreased. Selected hits for Nox2 were further screened for their ability to inhibit ONOO(-)formation in activated macrophages. A new diagnostic marker product for ONOO(-)is reported. We conclude that the newly developed high throughput screening/reactive oxygen species assays could also be used to identify potential inhibitors of ONOO(-)formed from Nox2-derived O2 (̇̄)and nitric oxide synthase-derived nitric oxide.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Glicoproteínas de Membrana/antagonistas & inhibidores , Sondas Moleculares/química , NADPH Oxidasas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Cromatografía Líquida de Alta Presión , Cumarinas/química , Inhibidores Enzimáticos/química , Fluorometría , Expresión Génica , Células HL-60 , Humanos , Peróxido de Hidrógeno/antagonistas & inhibidores , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Activación de Macrófagos/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , NADPH Oxidasa 2 , NADPH Oxidasas/metabolismo , Oxazinas/química , Oxidación-Reducción , Ácido Peroxinitroso/antagonistas & inhibidores , Ácido Peroxinitroso/biosíntesis , Ácido Peroxinitroso/química , Fenantridinas/química , Compuestos de Amonio Cuaternario/química , Bibliotecas de Moléculas Pequeñas/química , Superóxidos/antagonistas & inhibidores , Superóxidos/química , Superóxidos/metabolismo , Acetato de Tetradecanoilforbol/farmacología
6.
Arch Biochem Biophys ; 617: 38-47, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27590268

RESUMEN

In this review, some of the recent developments in probes and assay techniques specific for superoxide (O2-) and hydrogen peroxide (H2O2) are discussed. Over the last decade, significant progress has been made in O2- and H2O2 detection due to syntheses of new redox probes, better understanding of their chemistry, and development of specific and sensitive assays. For superoxide detection, hydroethidine (HE) is the most suitable probe, as the product, 2-hydroxyethidium, is specific for O2-. In addition, HE-derived dimeric products are specific for one-electron oxidants. As red-fluorescent ethidium is always formed from HE intracellularly, chromatographic techniques are required for detecting 2-hydroxyethidium. HE analogs, Mito-SOX and hydropropidine, exhibit the same reaction chemistry with O2- and one-electron oxidants. Thus, mitochondrial superoxide can be unequivocally detected using HPLC-based methods and not by fluorescence microscopy. Aromatic boronate-based probes react quantitatively with H2O2, forming a phenolic product. However, peroxynitrite and hypochlorite react more rapidly with boronates, forming the same product. Using ROS-specific probes and HPLC assays, it is possible to screen chemical libraries to discover specific inhibitors of NADPH oxidases. We hope that rigorous detection of O2- and H2O2 in different cellular compartments will improve our understanding of their role in redox signaling.


Asunto(s)
Mitocondrias/metabolismo , Oxígeno/química , Fenantridinas/química , Superóxidos/química , Proliferación Celular , Cromatografía Líquida de Alta Presión , Células HEK293 , Humanos , Oxidación-Reducción , Especies Reactivas de Oxígeno/química , Transducción de Señal
7.
Org Biomol Chem ; 15(30): 6358-6366, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28715016

RESUMEN

Three new DEPMPO-based spin traps have been designed and synthesized for improved superoxide detection, each carrying a cyclodextrin (CD) moiety but with a different alkyl chain on the phosphorus atom or with a long spacer arm. EPR spectroscopy allowed us to estimate the half-life of the superoxide spin adducts which is close to the value previously reported for CD-DEPMPO (t1/2 ≈ 50-55 min under the conditions investigated). The spectra are typical of superoxide adducts (almost no features of the HO˙ adduct that usually forms with time for other nitrone spin traps such as DMPO) and we show that at 250 µM, the new spin trap enables the reliable detection of superoxide by 1 scan at the position opposite to the corresponding spin trap without the CD moiety. The resistance of the spin adducts to a reduction process has been evaluated, and the superoxide spin adducts are sensitive to ascorbate and glutathione (GSH), but not to glutathione peroxidase/GSH, reflecting the exposed nature of the nitroxide moiety to the bulk solvent. To understand these results, 2D-ROESY NMR studies and molecular dynamics pointed to a shallow or surface self-inclusion of the nitrone spin traps and of nitroxide spin adducts presumably due to the high flexibility of the permethyl-ß-CD rim.


Asunto(s)
Óxidos de Nitrógeno/química , Óxidos de Nitrógeno/síntesis química , Marcadores de Spin , Superóxidos/análisis , Superóxidos/química , beta-Ciclodextrinas/química , Ácido Ascórbico/química , Técnicas de Química Sintética , Espectroscopía de Resonancia por Spin del Electrón , Glutatión/química , Cinética , Límite de Detección , Conformación Molecular , Simulación de Dinámica Molecular
8.
Biochim Biophys Acta ; 1840(2): 739-44, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23668959

RESUMEN

BACKGROUND: Nearly ten years ago, we demonstrated that superoxide radical anion (O2⋅¯) reacts with the hydroethidine dye (HE, also known as dihydroethidium, DHE) to form a diagnostic marker product, 2-hydroxyethidium (2-OH-E(+)). This particular product is not derived from reacting HE with other biologically relevant oxidants (hydrogen peroxide, hydroxyl radical, or peroxynitrite). This discovery negated the longstanding view that O2⋅¯ reacts with HE to form the other oxidation product, ethidium (E(+)). It became clear that due to the overlapping fluorescence spectra of E(+) and 2-OH-E(+), fluorescence-based techniques using the "red fluorescence" are not suitable for detecting and measuring O2⋅¯ in cells using HE or other structurally analogous fluorogenic probes (MitoSOX(TM) Red or hydropropidine). However, using HPLC-based assays, 2-OH-E(+) and analogous hydroxylated products can be easily detected and quickly separated from other oxidation products. SCOPE OF REVIEW: The principles discussed in this chapter are generally applicable in free radical biology and medicine, redox biology, and clinical and translational research. The assays developed here could be used to discover new and targeted inhibitors for various superoxide-producing enzymes, including NADPH oxidase (NOX) isoforms. MAJOR CONCLUSIONS: HPLC-based approaches using site-specific HE-based fluorogenic probes are eminently suitable for monitoring O2⋅¯ in intra- and extracellular compartments and in mitochondria. The use of fluorescence-microscopic methods should be avoided because of spectral overlapping characteristics of O2⋅¯-derived marker product and other, non-specific oxidized fluorescent products formed from these probes. GENERAL SIGNIFICANCE: Methodologies and site-specific fluorescent probes described in this review can be suitably employed to delineate oxy radical dependent mechanisms in cells under physiological and pathological conditions. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Matriz Extracelular/metabolismo , Colorantes Fluorescentes , Fenantridinas/química , Superóxidos/análisis , Animales , Humanos
9.
J Am Chem Soc ; 137(32): 10238-45, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26197228

RESUMEN

We describe a photochemical method to introduce a single alcohol function directly on cucurbit[n]urils (n = 5, 6, 7, 8) with conversions of the order 95-100% using hydrogen peroxide and UV light. The reaction was easily scaled up to 1 g for CB[6] and CB[7]. Spin trapping of cucurbituril radicals combined with MS experiments allowed us to get insights about the reaction mechanism and characterize CB[5], CB[6], CB[7], and CB[8] monofunctional compounds. Experiments involving (18)O isotopically labeled water indicated that the mechanism was complex and showed signs of both radical and ionic intermediates. DFT calculations allowed estimating the Bond Dissociation Energies (BDEs) of each hydrogen atom type in the CB series, providing an explanation of the higher reactivity of the "equatorial" C-H position of CB[n] compounds. These results also showed that, for CB[8], direct functionalization on the cucurbituril skeleton is more difficult because one of the methylene hydrogen atoms (Hb) has its BDE lowering within the series and coming close to that of Hc, thus opening the way to other types of free radicals generated on the CB[8] skeleton leading to several side products. Yet CB[5]-(OH)1 and CB[8]-(OH)1, the first CB[8] derivative, were obtained in excellent yields thanks to the soft method presented here.

10.
Chemistry ; 21(46): 16404-10, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26403999

RESUMEN

Nitroxide free radicals have been used to study the inner space of one of Rebek's water-soluble capsules. EPR and (1) H NMR spectroscopy, ESI-MS, and DFT calculations showed a preference for the formation of 1:2 complexes. EPR titrations allowed us to determine binding constants (Ka ) in the order of 10(7) M(-2) . EPR spectral-shape analysis provided information on the guest rotational dynamics within the capsule. The interplay between optimum hydrogen bonding upon capsule formation and steric strain for guest accommodation highlights some degree of flexibility for guest inclusion, particularly at the center of the capsule where the hydrogen bond seam can be barely distorted or slightly disturbed.

11.
Chemistry ; 20(14): 4064-71, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24590621

RESUMEN

The 5-diethoxyphosphonyl-5-methyl-1-pyrroline N-oxide superoxide spin adduct (DEPMPO-OOH) is much more persistent (about 15 times) than the 5,5-dimethyl-1-pyrroline N-oxide superoxide spin adduct (DMPO-OOH). The diethoxyphosphonyl group is bulkier than the methyl group and its electron-withdrawing effect is much stronger. These two factors could play a role in explaining the different half-lifetimes of DMPO-OOH and DEPMPO-OOH. The trifluoromethyl and the diethoxyphosphonyl groups show similar electron-withdrawing effects but have different sizes. We have thus synthesized and studied 5-methyl-5-trifluoromethyl-1-pyrroline N-oxide (5-TFDMPO), a new trifluoromethyl analogue of DMPO, to compare its spin-trapping performance with those of DMPO and DEPMPO. 5-TFDMPO was prepared in a five-step sequence by means of the Zn/AcOH reductive cyclization of 5,5,5-trifluoro-4-methyl-4-nitropentanal, and the geometry of the molecule was estimated by using DFT calculations. The spin-trapping properties were investigated both in toluene and in aqueous buffer solutions for oxygen-, sulfur-, and carbon-centered radicals. All the spin adducts exhibit slightly different fluorine hyperfine coupling constants, thereby suggesting a hindered rotation of the trifluoromethyl group, which was confirmed by variable-temperature EPR studies and DFT calculations. In phosphate buffer at pH 7.4, the half-life of 5-TFDMPOOOH is about three times shorter than for DEPMPO-OOH and five times longer than for DMPO-OOH. Our results suggest that the stabilization of the superoxide adducts comes from a delicate balance between steric, electronic, and hydrogen-bonding effects that involve the ß group, the hydroperoxyl moiety, and the nitroxide.


Asunto(s)
Carbono/química , Detección de Spin/métodos , Superóxidos/química , Espectroscopía de Resonancia por Spin del Electrón , Estructura Molecular
12.
Chem Res Toxicol ; 27(7): 1155-65, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24890552

RESUMEN

Development of reliable methods and site-specific detection of free radicals is an active area of research. Here, we describe the synthesis and radical-trapping properties of new derivatives of DEPMPO and DIPPMPO, bearing a mitochondria-targeting triphenylphosphonium cationic moiety or guanidinium cationic group. All of the spin traps prepared have been observed to efficiently trap superoxide radical anions in a cell-free system. The superoxide spin adducts exhibited similar spectral properties, indicating no significant differences in the geometry of the cyclic nitroxide moieties of the spin adducts. The superoxide adduct stability was measured and observed to be highest (t1/2 = 73 min) for DIPPMPO nitrone linked to triphenylphosphonium moiety via a short carbon chain (Mito-DIPPMPO). The experimental results and DFT quantum chemical calculations indicate that the cationic property of the triphenylphosphonium group may be responsible for increased superoxide trapping efficiency and adduct stability of Mito-DIPPMPO, as compared to the DIPPMPO spin trap. The studies of uptake of the synthesized traps into isolated mitochondria indicated the importance of both cationic and lipophilic properties, with the DEPMPO nitrone linked to the triphenylphosphonium moiety via a long carbon chain (Mito10-DEPMPO) exhibiting the highest mitochondrial uptake. We conclude that, of the synthesized traps, Mito-DIPPMPO and Mito10-DEPMPO are the best candidates for potential mitochondria-specific spin traps for use in biologically relevant systems.


Asunto(s)
Óxidos N-Cíclicos/metabolismo , Mitocondrias Cardíacas/metabolismo , Organofosfonatos/metabolismo , Pirroles/metabolismo , Superóxidos/metabolismo , Animales , Óxidos N-Cíclicos/química , Organofosfonatos/química , Pirroles/química , Ratas , Detección de Spin , Superóxidos/química
13.
Redox Biol ; 71: 103092, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38377788

RESUMEN

In this review, we explore how short-chain fatty acids (SCFAs) produced by the gut microbiome affect Parkinson's disease (PD) through their modulatory interactions with alpha-synuclein, neuroinflammation, and oxidative stress mediated by reactive oxygen and nitrogen species (ROS/RNS). In particular, SCFAs-such as acetate, propionate, and butyrate-are involved in gut-brain communication and can modulate alpha-synuclein aggregation, a hallmark of PD. The gut microbiome of patients with PD has lower levels of SCFAs than healthy individuals. Probiotics may be a potential strategy to restore SCFAs and alleviate PD symptoms, but the underlying mechanisms are not fully understood. Also in this review, we discuss how alpha-synuclein, present in the guts and brains of patients with PD, may induce neuroinflammation and oxidative stress via ROS/RNS. Alpha-synuclein is considered an early biomarker for PD and may link the gut-brain axis to the disease pathogenesis. Therefore, elucidating the role of SCFAs in the gut microbiome and their impact on alpha-synuclein-induced neuroinflammation in microglia and on ROS/RNS is crucial in PD pathogenesis and treatment.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Humanos , alfa-Sinucleína , Ácidos Grasos Volátiles , Enfermedades Neuroinflamatorias , Oxígeno , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/patología , Especies de Nitrógeno Reactivo , Especies Reactivas de Oxígeno
14.
Commun Biol ; 7(1): 668, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816577

RESUMEN

Parkinson's disease is managed using levodopa; however, as Parkinson's disease progresses, patients require increased doses of levodopa, which can cause undesirable side effects. Additionally, the oral bioavailability of levodopa decreases in Parkinson's disease patients due to the increased metabolism of levodopa to dopamine by gut bacteria, Enterococcus faecalis, resulting in decreased neuronal uptake and dopamine formation. Parkinson's disease patients have varying levels of these bacteria. Thus, decreasing bacterial metabolism is a promising therapeutic approach to enhance the bioavailability of levodopa in the brain. In this work, we show that Mito-ortho-HNK, formed by modification of a naturally occurring molecule, honokiol, conjugated to a triphenylphosphonium moiety, mitigates the metabolism of levodopa-alone or combined with carbidopa-to dopamine. Mito-ortho-HNK suppresses the growth of E. faecalis, decreases dopamine levels in the gut, and increases dopamine levels in the brain. Mitigating the gut bacterial metabolism of levodopa as shown here could enhance its efficacy.


Asunto(s)
Encéfalo , Dopamina , Enterococcus faecalis , Microbioma Gastrointestinal , Levodopa , Enfermedad de Parkinson , Levodopa/metabolismo , Levodopa/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Dopamina/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/microbiología , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Animales , Enterococcus faecalis/metabolismo , Enterococcus faecalis/efectos de los fármacos , Masculino , Antiparkinsonianos/metabolismo , Antiparkinsonianos/administración & dosificación , Antiparkinsonianos/farmacología , Carbidopa , Humanos , Compuestos de Bifenilo/metabolismo , Ratones , Compuestos Organofosforados/metabolismo , Ratones Endogámicos C57BL
15.
Cancer Metab ; 12(1): 13, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702787

RESUMEN

BACKGROUND: Hypoxia is a common feature of many solid tumors and causes radiotherapy and immunotherapy resistance. Pharmacological inhibition of oxidative phosphorylation (OXPHOS) has emerged as a therapeutic strategy to reduce hypoxia. However, the OXPHOS inhibitors tested in clinical trials caused only moderate responses in hypoxia alleviation or trials were terminated due to dose-limiting toxicities. To improve the therapeutic benefit, FDA approved OXPHOS inhibitors (e.g. atovaquone) were conjugated to triphenylphosphonium (TPP+) to preferentially target cancer cell's mitochondria. In this study, we evaluated the hypoxia reducing effects of several mitochondria-targeted OXPHOS inhibitors and compared them to non-mitochondria-targeted OXPHOS inhibitors using newly developed spheroid models for diffusion-limited hypoxia. METHODS: B16OVA murine melanoma cells and MC38 murine colon cancer cells expressing a HIF-Responsive Element (HRE)-induced Green Fluorescent Protein (GFP) with an oxygen-dependent degradation domain (HRE-eGFP-ODD) were generated to assess diffusion-limited hypoxia dynamics in spheroids. Spheroids were treated with IACS-010759, atovaquone, metformin, tamoxifen or with mitochondria-targeted atovaquone (Mito-ATO), PEGylated mitochondria-targeted atovaquone (Mito-PEG-ATO) or mitochondria-targeted tamoxifen (MitoTam). Hypoxia dynamics were followed and quantified over time using the IncuCyte Zoom Live Cell-Imaging system. RESULTS: Hypoxic cores developed in B16OVA.HRE and MC38.HRE spheroids within 24 h hours after seeding. Treatment with IACS-010759, metformin, atovaquone, Mito-PEG-ATO and MitoTam showed a dose-dependent reduction of hypoxia in both B16OVA.HRE and MC38.HRE spheroids. Mito-ATO only alleviated hypoxia in MC38.HRE spheroids while tamoxifen was not able to reduce hypoxia in any of the spheroid models. The mitochondria-targeted OXPHOS inhibitors demonstrated stronger anti-hypoxic effects compared to the non-mito-targeted OXPHOS inhibitors. CONCLUSIONS: We successfully developed a high-throughput spheroid model in which hypoxia dynamics can be quantified over time. Using this model, we showed that the mitochondria-targeted OXPHOS inhibitors Mito-ATO, Mito-PEG-ATO and MitoTam reduce hypoxia in tumor cells in a dose-dependent manner, potentially sensitizing hypoxic tumor cells for radiotherapy.

16.
J Biol Chem ; 287(5): 2984-95, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22139901

RESUMEN

Herein we describe a high-throughput fluorescence and HPLC-based methodology for global profiling of reactive oxygen and nitrogen species (ROS/RNS) in biological systems. The combined use of HPLC and fluorescence detection is key to successful implementation and validation of this methodology. Included here are methods to specifically detect and quantitate the products formed from interaction between the ROS/RNS species and the fluorogenic probes, as follows: superoxide using hydroethidine, peroxynitrite using boronate-based probes, nitric oxide-derived nitrosating species with 4,5-diaminofluorescein, and hydrogen peroxide and other oxidants using 10-acetyl-3,7-dihydroxyphenoxazine (Amplex® Red) with and without horseradish peroxidase, respectively. In this study, we demonstrate real-time monitoring of ROS/RNS in activated macrophages using high-throughput fluorescence and HPLC methods. This global profiling approach, simultaneous detection of multiple ROS/RNS products of fluorescent probes, developed in this study will be useful in unraveling the complex role of ROS/RNS in redox regulation, cell signaling, and cellular oxidative processes and in high-throughput screening of anti-inflammatory antioxidants.


Asunto(s)
Modelos Biológicos , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Línea Celular , Ratones , Sondas Moleculares/química , Sondas Moleculares/farmacología , Oxidación-Reducción
17.
Sci Rep ; 13(1): 7254, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142668

RESUMEN

N-acetylcysteine (NAC) has been used as an antioxidant drug in tumor cells and preclinical mice tumor xenografts, and it improves adaptive immunotherapy in melanoma. NAC is not readily bioavailable and is used in high concentrations. The effects of NAC have been attributed to its antioxidant and redox signaling role in mitochondria. New thiol-containing molecules targeted to mitochondria are needed. Here, mitochondria-targeted NAC with a 10-carbon alkyl side chain attached to a triphenylphosphonium group (Mito10-NAC) that is functionally similar to NAC was synthesized and studied. Mito10-NAC has a free sulfhydryl group and is more hydrophobic than NAC. Mito10-NAC is nearly 2000-fold more effective than NAC in inhibiting several cancer cells, including pancreatic cancer cells. Methylation of NAC and Mito10-NAC also inhibited cancer cell proliferation. Mito10-NAC inhibits mitochondrial complex I-induced respiration and, in combination with monocarboxylate transporter 1 inhibitor, synergistically decreased pancreatic cancer cell proliferation. Results suggest that the antiproliferative effects of NAC and Mito10-NAC are unlikely to be related to their antioxidant mechanism (i.e., scavenging of reactive oxygen species) or to the sulfhydryl group-dependent redox modulatory effects.


Asunto(s)
Acetilcisteína , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Acetilcisteína/farmacología , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/farmacología , Mitocondrias , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas
18.
Cancers (Basel) ; 15(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36831432

RESUMEN

Boronate-based compounds have been used in brain cancer therapy, either as prodrugs or in combination with other modalities. Boronates containing pro-luminescent and fluorescent probes have been used in mouse models of cancer. In this study, we synthesized and developed polyphenolic boronates and mitochondria-targeted polyphenolic phytochemicals (e.g., magnolol [MGN] and honokiol [HNK]) and tested their antiproliferative effects in brain cancer cells. Results show that mitochondria-targeted (Mito) polyphenolic boronates (Mito-MGN-B and Mito-HNK-B) were slightly more potent than Mito-MGN and Mito-HNK in inhibiting proliferation of the U87MG cell line. Similar proliferation results also were observed in other cancer cell lines, such as MiaPaCa-2, A549 and UACC-62. Independent in vitro experiments indicated that reactive nitrogen species (e.g., peroxynitrite) and reactive oxygen species (e.g., hydrogen peroxide) stoichiometrically react with polyphenolic boronates and Mito-polphenolic boronates, forming polyphenols and Mito-polyphenols as major products. Previous reports suggest that both Mito-MGN and Mito-HNK activate cytotoxic T cells and inhibit immunosuppressive immune cells. We propose that Mito-polyphenolic boronate-based prodrugs may be used to inhibit tumor proliferation and mitigate oxidant formation in the tumor microenvironment, thereby generating Mito-polyphenols in situ, as well as showing activity in the tumor microenvironment.

19.
Free Radic Biol Med ; 205: 175-187, 2023 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-37321281

RESUMEN

Mitochondria-targeted coenzyme Q10 (Mito-ubiquinone, Mito-quinone mesylate, or MitoQ) was shown to be an effective antimetastatic drug in patients with triple-negative breast cancer. MitoQ, sold as a nutritional supplement, prevents breast cancer recurrence. It potently inhibited tumor growth and tumor cell proliferation in preclinical xenograft models and in vitro breast cancer cells. The proposed mechanism of action involves the inhibition of reactive oxygen species by MitoQ via a redox-cycling mechanism between the oxidized form, MitoQ, and the fully reduced form, MitoQH2 (also called Mito-ubiquinol). To fully corroborate this antioxidant mechanism, we substituted the hydroquinone group (-OH) with the methoxy group (-OCH3). Unlike MitoQ, the modified form, dimethoxy MitoQ (DM-MitoQ), lacks redox-cycling between the quinone and hydroquinone forms. DM-MitoQ was not converted to MitoQ in MDA-MB-231 cells. We tested the antiproliferative effects of both MitoQ and DM-MitoQ in human breast cancer (MDA-MB-231), brain-homing cancer (MDA-MB-231BR), and glioma (U87MG) cells. Surprisingly, DM-MitoQ was slightly more potent than MitoQ (IC50 = 0.26 µM versus 0.38 µM) at inhibiting proliferation of these cells. Both MitoQ and DM-MitoQ potently inhibited mitochondrial complex I-dependent oxygen consumption (IC50 = 0.52 µM and 0.17 µM, respectively). This study also suggests that DM-MitoQ, which is a more hydrophobic analog of MitoQ (logP: 10.1 and 8.7) devoid of antioxidant function and reactive oxygen species scavenging ability, can inhibit cancer cell proliferation. We conclude that inhibition of mitochondrial oxidative phosphorylation by MitoQ is responsible for inhibition of breast cancer and glioma proliferation and metastasis. Blunting the antioxidant effect using the redox-crippled DM-MitoQ can serve as a useful negative control in corroborating the involvement of free radical-mediated processes (e.g., ferroptosis, protein oxidation/nitration) using MitoQ in other oxidative pathologies.


Asunto(s)
Neoplasias de la Mama , Glioma , Humanos , Femenino , Antioxidantes/farmacología , Antioxidantes/metabolismo , Hidroquinonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Ubiquinona/farmacología , Oxidación-Reducción , Proliferación Celular , Estrés Oxidativo , Compuestos Organofosforados/farmacología
20.
Expert Opin Ther Targets ; 27(10): 939-952, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37736880

RESUMEN

INTRODUCTION: Drugs targeting mitochondria are emerging as promising antitumor therapeutics in preclinical models. However, a few of these drugs have shown clinical toxicity. Developing mitochondria-targeted modified natural compounds and US FDA-approved drugs with increased therapeutic index in cancer is discussed as an alternative strategy. AREAS COVERED: Triphenylphosphonium cation (TPP+)-based drugs selectively accumulate in the mitochondria of cancer cells due to their increased negative membrane potential, target the oxidative phosphorylation proteins, inhibit mitochondrial respiration, and inhibit tumor proliferation. TPP+-based drugs exert minimal toxic side effects in rodents and humans. These drugs can sensitize radiation and immunotherapies. EXPERT OPINION: TPP+-based drugs targeting the tumor mitochondrial electron transport chain are a new class of oxidative phosphorylation inhibitors with varying antiproliferative and antimetastatic potencies. Some of these TPP+-based agents, which are synthesized from naturally occurring molecules and FDA-approved drugs, have been tested in mice and did not show notable toxicity, including neurotoxicity, when used at doses under the maximally tolerated dose. Thus, more effort should be directed toward the clinical translation of TPP+-based OXPHOS-inhibiting drugs in cancer prevention and treatment.


Mitochondria, which are the cell's powerhouse of energy, are functional in cancer cells. Inhibition of cancer cell respiration is associated with inhibition of cancer cell proliferation. Therefore, mitochondria have become a promising target for developing antitumor drugs to treat cancer. Several classes of drug molecules selectively target cancer cell mitochondria and inhibit mitochondrial respiration or oxidative phosphorylation (OXPHOS). A new class of OXPHOS-targeting drugs is emerging as a potential cancer therapeutic. One of the OXPHOS inhibitor drugs, IACS-010759, developed by investigators at MD Anderson Cancer Center, was tested in patients with acute myeloid leukemia. Patients who were administered the drug developed peripheral neuropathy and other complications (lactic acidosis), resulting in dose reduction. At lower doses, this drug was not effective. Subsequently, the clinical trial was terminated. The investigators then showed the same type of neurotoxicity using a mouse model. These findings were recently published. Thus, there is an urgent need to develop new OXPHOS inhibitors that do not have neurotoxicity in mice or humans.In this opinion article, we make a case that there are other triphenylphosphonium cation (TPP+)-based mitochondrial OXPHOS inhibitors (inhibiting both complex I and complex III) that are structural modifications of naturally occurring molecules or US FDA-approved drugs. These mitochondria-targeted drugs (MTDs) are as potent as IACS-010759 in cells and in preclinical models. Several TPP+-based MTDs have been tested in mice and did not exert neurotoxicity. TPP+-containing MTDs such as mitochondria-targeted coenzyme Q10 (MitoQ) have been tested in patients with Parkinson's disease, with no evidence of peripheral neuropathy or other toxicity (e.g., lactic acidosis). Other US FDA-approved drugs (metformin and atovaquone [ATO] or papaverine) are in clinical trials alone or in combination with other standard-of-care treatments (e.g., radiation therapy). We recommend that TPP+-based drugs that have been tested in preclinical models or in humans should undergo clinical trials in patients with cancer.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Ratones , Animales , Mitocondrias/metabolismo , Fosforilación Oxidativa , Neoplasias/patología , Sistemas de Liberación de Medicamentos , Antineoplásicos/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA