Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Clin Microbiol ; 45(12): 3875-82, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17928425

RESUMEN

There are numerous viral and bacterial causes of respiratory disease. To enable rapid and sensitive detection of even the most prevalent causes, there is a need for more-simplified testing systems that enable researchers and clinicians to perform multiplexed molecular diagnostics quickly and easily. To this end, a new multiplexed molecular test called the MultiCode-PLx respiratory virus panel (PLx-RVP) was developed and then implemented in a public health laboratory setting. A total of 687 respiratory samples were analyzed for the presence of 17 viruses that commonly cause respiratory disease. As a comparator, the samples were also tested using a standard testing algorithm that included the use of a real-time influenza virus A and B reverse transcription-PCR test and routine viral culture identification. The standard testing algorithm identified 503 (73%) samples as positive and 184 as negative. Analyzing the same 687 samples, the PLx-RVP assay detected one or more targets in 528 (77%) samples and found 159 samples negative for all targets. There were 25 discordant results between the two systems; 14 samples were positive for viruses not routinely tested for by the Wisconsin State Laboratory of Hygiene, and 13 of these were confirmed by real-time PCR. When the results of the standard testing algorithm were considered "true positives," the PLx-RVP assay showed an overall sensitivity of 99% and an overall specificity of 87%. In total, the PLx-RVP assay detected an additional 40 viral infections, of which 11 were mixed infections.


Asunto(s)
Reacción en Cadena de la Polimerasa/métodos , Infecciones del Sistema Respiratorio/virología , Virosis/diagnóstico , Virus/clasificación , Virus/aislamiento & purificación , Humanos , Sensibilidad y Especificidad , Cultivo de Virus , Virus/genética
2.
Appl Environ Microbiol ; 68(1): 245-53, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11772633

RESUMEN

Utilizing the principle of competitive PCR, we developed two assays to enumerate Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and nitrite-oxidizing bacteria belonging to the genus NITROSPIRA: The specificities of two primer sets, which were designed for two target regions, the amoA gene and Nitrospira 16S ribosomal DNA (rDNA), were verified by DNA sequencing. Both assays were optimized and applied to full-scale, activated sludge wastewater treatment plant (WWTP) samples. If it was assumed that there was an average of 3.6 copies of 16S rDNA per cell in the total population and two copies of the amoA gene per ammonia-oxidizing bacterial cell, the ammonia oxidizers examined represented 0.0033% +/- 0.0022% of the total bacterial population in a municipal WWTP. N. oligotropha-like ammonia-oxidizing bacteria were not detected in an industrial WWTP. If it was assumed that there was one copy of the 16S rDNA gene per nitrite-oxidizing bacterial cell, Nitrospira spp. represented 0.39% +/- 0.28% of the biosludge population in the municipal WWTP and 0.37% +/- 0.23% of the population in the industrial WWTP. The number of Nitrospira sp. cells in the municipal WWTP was more than 62 times greater than the number of N. oligotropha-like cells, based on a competitive PCR analysis. The results of this study extended our knowledge of the comparative compositions of nitrifying bacterial populations in wastewater treatment systems. Importantly, they also demonstrated that we were able to quantify these populations, which ultimately will be required for accurate prediction of process performance and stability for cost-effective design and operation of WWTPs.


Asunto(s)
Amoníaco/metabolismo , Bacterias/aislamiento & purificación , Nitrosomonas/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Eliminación de Residuos Líquidos , Bacterias/clasificación , Bacterias/genética , ADN Ribosómico/análisis , Datos de Secuencia Molecular , Nitritos/metabolismo , Nitrosomonas/clasificación , Nitrosomonas/genética , Oxidación-Reducción , Oxidorreductasas/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos
3.
Environ Sci Technol ; 37(2): 343-51, 2003 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-12564907

RESUMEN

Real-time PCR assays using TaqMan or Molecular Beacon probes were developed and optimized for the quantification of total bacteria, the nitrite-oxidizing bacteria Nitrospira, and Nitrosomonas oligotropha-like ammonia oxidizing bacteria (AOB) in mixed liquor suspended solids (MLSS) from a municipal wastewater treatment plant (WWTP) using a single-sludge nitrification process. The targets for the real-time PCR assays were the 16S rRNA genes (16S rDNA) for bacteria and Nitrospira spp. and the amoA gene for N. oligotropha. A previously reported assay for AOB 16S rDNA was also tested for its application to activated sludge. The Nitrospira 16S rDNA, AOB 16S rDNA, and N. oligotropha-like amoA assays were log-linear over 6 orders of magnitude and the bacterial 16S rDNA real-time PCR assay was log-linear over 4 orders of magnitude with DNA standards. When these real-time PCR assays were applied to DNA extracted from MLSS, dilution of the DNA extracts was necessary to prevent PCR inhibition. The optimal DNA dilution range was broad for the bacterial 16S rDNA (1000-fold) and Nitrospira 16S rDNA assays (2500-fold) but narrow for the AOB 16S rDNA assay (10-fold) and N. oligotropha-like amoA real-time PCR assay (5-fold). In twelve MLSS samples collected over one year, mean cell per L values were 4.3 +/- 2.0 x 10(11) for bacteria, 3.7 +/- 3.2 x 10(10) for Nitrospira, 1.2 +/- 0.9 x 10(10) for all AOB, and 7.5 +/- 6.0 x 10(9) for N. oligotropha-like AOB. The percent of the nitrifying population was 1.7% N. oligotropha-like AOB based on the N. oligotropha amoA assay, 2.9% total AOB based on the AOB 16S rDNA assay, and 8.6% nitrite-oxidizing bacteria based on the Nitrospira 16S rDNA assay. Ammonia-oxidizing bacteria in the wastewater treatment plant were estimated to oxidize 7.7 +/- 6.8 fmol/hr/cell based on the AOB 16S rDNA assay and 12.4 +/- 7.3 fmol/hr/cell based on the N. oligotropha amoA assay.


Asunto(s)
ADN Bacteriano/análisis , Nitrosomonas/genética , Reacción en Cadena de la Polimerasa/métodos , ARN Ribosómico 16S/análisis , Eliminación de Residuos Líquidos , Bioensayo , Monitoreo del Ambiente , Nitrógeno/metabolismo , Dinámica Poblacional
4.
Appl Environ Microbiol ; 69(11): 6597-604, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14602618

RESUMEN

The aims of this study were to determine the power of discrimination of the real-time PCR assay for monitoring fluctuations in microbial populations within activated sludge and to identify sample processing points where methodological changes are needed to minimize the variability in target quantification. DNA was extracted using a commercially available kit from mixed liquor samples taken from the aeration tank of four bench-scale activated-sludge reactors operating at 2-, 5-, 10-, and 20-day solid retention times, with mixed-liquor volatile suspended solid (MLVSS) values ranging from 260 to 2,610 mg/liter. Real-time PCR assays for bacterial and Nitrospira 16S rRNA genes were chosen because they represent, respectively, a highly abundant and a less-abundant bacterial target subject to clustering within the activated sludge matrix. The mean coefficient of variation in DNA yields (measured as microgram of DNA per milligram of MLVSS) in triplicate extractions of 12 different samples was 12.2%. Based on power analyses, the variability associated with DNA extraction had a small impact on the overall variability of the real-time PCR assay. Instead, a larger variability was associated with the PCR assay. The less-abundant target (Nitrospira 16S rRNA gene) had more variability than the highly abundant target (bacterial 16S rRNA gene), and samples from the lower-biomass reactors had more variability than samples from the higher-biomass reactors. Power analysis of real-time PCR assays indicated that three to five samples were necessary to detect a twofold increase in bacterial 16S rRNA genes, whereas three to five samples were required to detect a fivefold increase in Nitrospira 16S rRNA genes.


Asunto(s)
ADN Bacteriano/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Bacterias/clasificación , Bacterias/genética , Biomasa , ADN Bacteriano/análisis , ADN Ribosómico/análisis , Variación Genética , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Aguas del Alcantarillado/microbiología
5.
Clin Chem ; 50(11): 2019-27, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15319316

RESUMEN

BACKGROUND: All states require some kind of testing for newborns, but the policies are far from standardized. In some states, newborn screening may include genetic tests for a wide range of targets, but the costs and complexities of the newer genetic tests inhibit expansion of newborn screening. We describe the development and technical evaluation of a multiplex platform that may foster increased newborn genetic screening. METHODS: MultiCode PLx involves three major steps: PCR, target-specific extension, and liquid chip decoding. Each step is performed in the same reaction vessel, and the test is completed in approximately 3 h. For site-specific labeling and room-temperature decoding, we use an additional base pair constructed from isoguanosine and isocytidine. We used the method to test for mutations within the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The developed test was performed manually and by automated liquid handling. Initially, 225 samples with a range of genotypes were tested retrospectively with the method. A prospective study used samples from >400 newborns. RESULTS: In the retrospective study, 99.1% of samples were correctly genotyped with no incorrect calls made. In the perspective study, 95% of the samples were correctly genotyped for all targets, and there were no incorrect calls. CONCLUSIONS: The unique genetic multiplexing platform was successfully able to test for 31 targets within the CFTR gene and provides accurate genotype assignments in a clinical setting.


Asunto(s)
Análisis Mutacional de ADN/métodos , Tamizaje Neonatal/métodos , Reacción en Cadena de la Polimerasa/métodos , Autoanálisis , Fibrosis Quística/diagnóstico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Genotipo , Humanos , Recién Nacido , Mutación , Estudios Prospectivos , Estudios Retrospectivos , Robótica , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA