Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 26(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34885824

RESUMEN

This study investigated the impact of varying sound conditions (frequency and intensity) on yeast growth, fermentation performance and production of volatile organic compounds (VOCs) in beer. Fermentations were carried out in plastic bags suspended in large water-filled containers fitted with underwater speakers. Ferments were subjected to either 200-800 or 800-2000 Hz at 124 and 140 dB @ 20 µPa. Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was used to identify and measure the relative abundance of the VOCs produced. Sound treatment had significant effects on the number of viable yeast cells in suspension at 10 and 24 h (p < 0.05), with control (silence) samples having the highest cell numbers. For wort gravity, there were significant differences between treatments at 24 and 48 h, with the silence control showing the lowest density before all ferments converged to the same final gravity at 140 h. A total of 33 VOCs were identified in the beer samples, including twelve esters, nine alcohols, three acids, three aldehydes, and six hop-derived compounds. Only the abundance of some alcohols showed any consistent response to the sound treatments. These results show that the application of audible sound via underwater transmission to a beer fermentation elicited limited changes to wort gravity and VOCs during fermentation.


Asunto(s)
Cerveza/análisis , Fermentación , Saccharomyces cerevisiae/crecimiento & desarrollo , Sonido , Compuestos Orgánicos Volátiles/análisis , Recuento de Células , Ésteres/análisis , Concentración de Iones de Hidrógeno , Análisis de Componente Principal , Saccharomyces cerevisiae/citología
2.
PLoS One ; 18(2): e0281762, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36800360

RESUMEN

Sound is a physical stimulus that has the potential to affect various growth parameters of microorganisms. However, the effects of audible sound on microbes reported in the literature are inconsistent. Most published studies involve transmitting sound from external speakers through air toward liquid cultures of the microorganisms. However, the density differential between air and liquid culture could greatly alter the sound characteristics to which the microorganisms are exposed. In this study we apply white noise sound in a highly controlled experimental system that we previously established for transmitting sound underwater directly into liquid cultures to examine the effects of two key sound parameters, frequency and intensity, on the fermentation performance of a commercial Saccharomyces cerevisiae ale yeast growing in a maltose minimal medium. We performed these experiments in an anechoic chamber to minimise extraneous sound, and find little consistent effect of either sound frequency or intensity on the growth rate, maltose consumption, or ethanol production of this yeast strain. These results, while in contrast to those reported in most published studies, are consistent with our previous study showing that direct underwater exposure to white noise sound has little impact on S. cerevisiae volatile production and sugar utilization in beer medium. Thus, our results suggest the possibility that reported microorganism responses to sound may be an artefact associated with applying sound to cultures externally via transmission through air.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fermentación , Maltosa/farmacología , Proteínas de Saccharomyces cerevisiae/metabolismo , Cerveza
3.
Metabolites ; 11(9)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34564421

RESUMEN

The biological effect of sound on microorganisms has been a field of interest for many years, with studies mostly focusing on ultrasonic and infrasonic vibrations. In the audible range (20 Hz to 20 kHz), sound has been shown to both increase colony formation and disrupt microbial growth, depending upon the organism and frequency of sound used. In the brewer's yeast Saccharomyces cerevisiae, sound has been shown to significantly alter growth, increase alcohol production, and affect the metabolite profile. In this study, S. cerevisiae was exposed to a continuous 90 dB @ 20 µPa tone at different frequencies (0.1 kHz, 10 kHz, and silence). Fermentation characteristics were monitored over a 50-h fermentation in liquid malt extract, with a focus on growth rate and biomass yield. The profile of volatile metabolites at the subsequent stationary phase of the ferment was characterised by headspace gas chromatography-mass spectrometry. Sound treatments resulted in a 23% increase in growth rate compared to that of silence. Subsequent analysis showed significant differences in the volatilomes between all experimental conditions. Specifically, aroma compounds associated with citrus notes were upregulated with the application of sound. Furthermore, there was a pronounced difference in the metabolites produced in high- versus low-frequency sounds. This suggests industrial processes, such as beer brewing, could be modulated by the application of audible sound at specific frequencies during growth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA