Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 567(7747): 209-212, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30867609

RESUMEN

Machine learning and quantum computing are two technologies that each have the potential to alter how computation is performed to address previously untenable problems. Kernel methods for machine learning are ubiquitous in pattern recognition, with support vector machines (SVMs) being the best known method for classification problems. However, there are limitations to the successful solution to such classification problems when the feature space becomes large, and the kernel functions become computationally expensive to estimate. A core element in the computational speed-ups enabled by quantum algorithms is the exploitation of an exponentially large quantum state space through controllable entanglement and interference. Here we propose and experimentally implement two quantum algorithms on a superconducting processor. A key component in both methods is the use of the quantum state space as feature space. The use of a quantum-enhanced feature space that is only efficiently accessible on a quantum computer provides a possible path to quantum advantage. The algorithms solve a problem of supervised learning: the construction of a classifier. One method, the quantum variational classifier, uses a variational quantum circuit1,2 to classify the data in a way similar to the method of conventional SVMs. The other method, a quantum kernel estimator, estimates the kernel function on the quantum computer and optimizes a classical SVM. The two methods provide tools for exploring the applications of noisy intermediate-scale quantum computers3 to machine learning.

2.
Nature ; 549(7671): 203-209, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28905912

RESUMEN

The field of quantum algorithms aims to find ways to speed up the solution of computational problems by using a quantum computer. A key milestone in this field will be when a universal quantum computer performs a computational task that is beyond the capability of any classical computer, an event known as quantum supremacy. This would be easier to achieve experimentally than full-scale quantum computing, but involves new theoretical challenges. Here we present the leading proposals to achieve quantum supremacy, and discuss how we can reliably compare the power of a classical computer to the power of a quantum computer.

3.
Phys Rev Lett ; 126(14): 140502, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33891469

RESUMEN

Within a natural black-box setting, we exhibit a simple optimization problem for which a quantum variational algorithm that measures analytic gradients of the objective function with a low-depth circuit and performs stochastic gradient descent provably converges to an optimum faster than any algorithm that only measures the objective function itself, settling the question of whether measuring analytic gradients in such algorithms can ever be beneficial. We also derive upper bounds on the cost of gradient-based variational optimization near a local minimum.

4.
Phys Rev Lett ; 125(15): 150504, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33095634

RESUMEN

Limited quantum memory is one of the most important constraints for near-term quantum devices. Understanding whether a small quantum computer can simulate a larger quantum system, or execute an algorithm requiring more qubits than available, is both of theoretical and practical importance. In this Letter, we introduce cluster parameters K and d of a quantum circuit. The tensor network of such a circuit can be decomposed into clusters of size at most d with at most K qubits of inter-cluster quantum communication. We propose a cluster simulation scheme that can simulate any (K,d)-clustered quantum circuit on a d-qubit machine in time roughly 2^{O(K)}, with further speedups possible when taking more fine-grained circuit structure into account. We show how our scheme can be used to simulate clustered quantum systems-such as large molecules-that can be partitioned into multiple significantly smaller clusters with weak interactions among them. By using a suitable clustered ansatz, we also experimentally demonstrate that a quantum variational eigensolver can still achieve the desired performance for estimating the energy of the BeH_{2} molecule while running on a physical quantum device with half the number of required qubits.

6.
Phys Rev Lett ; 116(17): 170502, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-27176509

RESUMEN

Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions ("circuits") are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics.

7.
Phys Rev Lett ; 115(5): 050501, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26274402

RESUMEN

We give two strengthenings of an inequality for the quantum conditional mutual information of a tripartite quantum state recently proved by Fawzi and Renner, connecting it with the ability to reconstruct the state from its bipartite reductions. Namely, we show that the conditional mutual information is an upper bound on the regularized relative entropy distance between the quantum state and its reconstructed version. It is also an upper bound for the measured relative entropy distance of the state to its reconstructed version. The main ingredient of the proof is the fact that the conditional mutual information is the optimal quantum communication rate in the task of state redistribution.

8.
Phys Rev Lett ; 107(25): 250504, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22243059

RESUMEN

We describe two quantum channels that individually cannot send any classical information without some chance of decoding error. But together a single use of each channel can send quantum information perfectly reliably. This proves that the zero-error classical capacity exhibits superactivation, the extreme form of the superadditivity phenomenon in which entangled inputs allow communication over zero-capacity channels. But our result is stronger still, as it even allows zero-error quantum communication when the two channels are combined. Thus our result shows a new remarkable way in which entanglement across two systems can be used to resist noise, in this case perfectly. We also show a new form of superactivation by entanglement shared between sender and receiver.

9.
Phys Rev Lett ; 103(15): 150502, 2009 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-19905613

RESUMEN

Solving linear systems of equations is a common problem that arises both on its own and as a subroutine in more complex problems: given a matrix A and a vector b(-->), find a vector x(-->) such that Ax(-->) = b(-->). We consider the case where one does not need to know the solution x(-->) itself, but rather an approximation of the expectation value of some operator associated with x(-->), e.g., x(-->)(dagger) Mx(-->) for some matrix M. In this case, when A is sparse, N x N and has condition number kappa, the fastest known classical algorithms can find x(-->) and estimate x(-->)(dagger) Mx(-->) in time scaling roughly as N square root(kappa). Here, we exhibit a quantum algorithm for estimating x(-->)(dagger) Mx(-->) whose runtime is a polynomial of log(N) and kappa. Indeed, for small values of kappa [i.e., poly log(N)], we prove (using some common complexity-theoretic assumptions) that any classical algorithm for this problem generically requires exponentially more time than our quantum algorithm.

10.
Phys Rev Lett ; 97(17): 170502, 2006 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-17155455

RESUMEN

The Schur basis on n d-dimensional quantum systems is a generalization of the total angular momentum basis that is useful for exploiting symmetry under permutations or collective unitary rotations. We present efficient {size poly[n,d,log(1/epsilon)] for accuracy epsilon} quantum circuits for the Schur transform, which is the change of basis between the computational and the Schur bases. Our circuits provide explicit efficient methods for solving such diverse problems as estimating the spectrum of a density operator, quantum hypothesis testing, and communicating without a shared reference frame. We thus render tractable a large series of methods for extracting resources from quantum systems and for numerous quantum information protocols.

11.
Phys Rev Lett ; 93(23): 230504, 2004 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-15601136

RESUMEN

We introduce three new quantum protocols involving noisy quantum channels and entangled states, and relate them operationally and conceptually with four well-known old protocols. Two of the new protocols (the mother and father) can generate the other five "child" protocols by direct application of teleportation and superdense coding, and can be derived in turn by making the old protocols "coherent." This gives very simple proofs for two famous old protocols (the hashing inequality and quantum channel capacity) and provides the basis for optimal trade-off curves in several quantum information processing tasks.

12.
Phys Rev Lett ; 89(24): 247902, 2002 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-12484981

RESUMEN

Which gates are universal for quantum computation? Although it is well known that certain gates on two-level quantum systems (qubits), such as the controlled-not, are universal when assisted by arbitrary one-qubit gates, it has only recently become clear precisely what class of two-qubit gates is universal in this sense. We present an elementary proof that any entangling two-qubit gate is universal for quantum computation, when assisted by one-qubit gates. A proof of this result for systems of arbitrary finite dimension has been provided by Brylinski and Brylinski; however, their proof relies on a long argument using advanced mathematics. In contrast, our proof provides a simple constructive procedure which is close to optimal and experimentally practical.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA