Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Am Chem Soc ; 146(23): 15869-15878, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38830115

RESUMEN

The craft of tuning optical properties is well-established for crystalline inorganic and hybrid solids. However, a far greater challenge is to tune the optical properties of organic materials systematically by design. We now introduce a synthesis concept that enables us to alter the optical properties of crystalline covalent organic frameworks (COFs) systematically using isomeric structures of thienothiophene-based building blocks (T23/32T) combined with a variety of tetratopic aromatic amines, e.g., the Wurster moiety (W-NH2). This concept is demonstrated for the synthesis of COFs in bulk and film forms and provides highly crystalline and porous isomeric COFs featuring predesigned photophysical properties. The band gap of the framework can be tuned continuously and precisely by chemically doping the pristine W23TT COF with its related constitutional isomer building block. Density-functional theory investigations of COF model compounds indicate that the extent of π-conjugation is among the key characteristics enabling the band-gap engineering.

2.
J Am Chem Soc ; 146(39): 26694-26706, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39311491

RESUMEN

The possibility to combine organic semiconducting materials with inorganic halide perovskites opens exciting pathways toward tuning optoelectronic properties. Exploring stable and nontoxic, double perovskites as a host for electroactive organic cations to form two-dimensional (2D) hybrid materials is an emerging opportunity to create both functional and lead-free materials for optoelectronic applications. By introducing naphthalene and pyrene moieties into Ag-Bi-I and Cu-Bi-I double perovskite lattices, intrinsic electronic challenges of double perovskites are addressed and the electronic anisotropy of 2D perovskites can be modulated. (POE)4AgBiI8 containing pyrene moieties in the 2D layers was selected from a total of eight new 2D double perovskites, exhibiting a favorable electronic band structure with a type IIb multiple quantum well system based on a layer architecture suitable for out-of-plane conductivity and leading to a photocurrent response ratio of almost 3 orders of magnitude under AM1.5G illumination. Finally, an exclusively parallelly oriented thin film of (POE)4AgBiI8 was integrated into a device to construct the first pure n = 1 Ruddlesden-Popper 2D double perovskite solar cell.

3.
Biomacromolecules ; 25(7): 4177-4191, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38866384

RESUMEN

After RNAi was first discovered over 20 years ago, siRNA-based therapeutics are finally becoming reality. However, the delivery of siRNA has remained a challenge. In our previous research, we found that spermine-based poly(ß-amino ester)s are very promising for siRNA delivery. However, the role of hydrophobic modification in siRNA delivery of spermine-based poly(ß-amino ester)s is not fully understood yet. In the current work, we synthesized spermine-based poly(ß-amino ester)s with different percentages of oleylamine side chains, named P(SpOABAE). The chemical structures of the polymers were characterized by 1H NMR. The polymers showed efficient siRNA encapsulation determined by SYBR Gold assays. The hydrodynamic diameters of the P(SpOABAE) polyplexes from charge ratio N/P 1 to 20 were 30-100 nm except for aggregation phenomena observed at N/P 3. Morphology of the polyplexes was visualized by atomic force microscopy, and cellular uptake was determined by flow cytometry in H1299 cells, where all the polyplexes showed significantly higher cellular uptake than hyperbranched polyethylenimine (25 kDa). The most hydrophobic P(SpOABAE) polyplexes were able to achieve more than 90% GFP knockdown in H1299/eGFP cells. The fact that gene silencing efficacy increased with hydrophobicity but cellular uptake was affected by both charge and hydrophobic interactions highlights the importance of endosomal escape. For pulmonary administration and improved storage stability, the polyplexes were spray-dried. Results confirmed the maintained siRNA activity after storage for 3 months at room temperature, indicating potential for dry powder inhalation.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , ARN Interferente Pequeño , Espermina , ARN Interferente Pequeño/química , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/farmacología , Espermina/química , Humanos , Administración por Inhalación , Polímeros/química , Polvos/química , Línea Celular Tumoral
4.
Angew Chem Int Ed Engl ; 63(33): e202405636, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38807438

RESUMEN

Optoacoustic (or photoacoustic) imaging promises micron-resolution noninvasive bioimaging with much deeper penetration (>cm) than fluorescence. However, optoacoustic imaging of enzyme activity would require loud, photostable, NIR-absorbing molecular contrast agents, which remain unknown. Most organic molecular contrast agents are repurposed fluorophores, with severe shortcomings of photoinstability or phototoxicity under optoacoustic imaging, as consequences of their slow S1→S0 electronic relaxation. We now report that known fluorophores can be rationally modified to reach ultrafast S1→S0 rates, without much extra molecular complexity, simply by merging them with molecular switches. Here, we merge azobenzene switches with cyanine dyes to give ultrafast relaxation (<10 ps, >100-fold faster). Without even adapting instrument settings, these azohemicyanines display outstanding improvements in signal longevity (>1000-fold increase of photostability) and signal loudness (>3-fold even at time zero). We show why this simple but unexplored design strategy can still offer stronger performance in the future, and can also increase the spatial resolution and the quantitative linearity of photoacoustic response over extended longitudinal imaging. By bringing the world of molecular switches and rotors to bear on problems facing optoacoustic agents, this practical strategy will help to unleash the full potential of optoacoustic imaging in fundamental studies and translational uses.


Asunto(s)
Compuestos Azo , Carbocianinas , Colorantes Fluorescentes , Técnicas Fotoacústicas , Compuestos Azo/química , Técnicas Fotoacústicas/métodos , Colorantes Fluorescentes/química , Carbocianinas/química , Humanos , Rayos Infrarrojos , Estructura Molecular , Imagen Óptica
5.
Chem Rev ; 117(7): 4945-4960, 2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28212025

RESUMEN

Tip-enhanced near-field Raman microscopy spectroscopy is a scanning probe technique that is capable of providing vibrational spectroscopic information on single nanoobjects and surfaces at (sub-) nanometer spatial resolution and high detection sensitivity. In this review, we first illustrate the physical principle of optical nanoantennas used in tip-enhanced near-field Raman microscopy and tip-enhanced Raman scattering (TERS) to efficiently couple light to Raman excitations on nanometer length scales. Although the antennas' electric near-field distributions are commonly understood to determine the spatial resolution, recent experiments showing subnanometer-resolved optical images put this understanding into question. This is because such images enter a regime in which classical electrodynamical descriptions might no longer be applicable and quantum plasmonic and atomistic effects could become relevant. After summarizing the current understanding of plasmonic phenomena at extremely short length scales, we discuss the different mechanisms contributing to the signal enhancement. In addition to the known contributions from electric-field and chemical enhancement, several new models have been proposed very recently that could provide important guidelines for the optimization of TERS experiments. We then review recent developments in the areas of antenna design, fabrication, and characterization. Finally, we briefly highlight recent applications to illustrate future directions of tip-enhanced near-field Raman microscopy and TERS.

6.
J Am Chem Soc ; 138(4): 1234-9, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26694214

RESUMEN

Crystallinity and porosity are of central importance for many properties of covalent organic frameworks (COFs), including adsorption, diffusion, and electronic transport. We have developed a new method for strongly enhancing both aspects through the introduction of a modulating agent in the synthesis. This modulator competes with one of the building blocks during the solvothermal COF growth, resulting in highly crystalline frameworks with greatly increased domain sizes reaching several hundreds of nanometers. The obtained materials feature fully accessible pores with an internal surface area of over 2000 m(2) g(-1). Compositional analysis via NMR spectroscopy revealed that the COF-5 structure can form over a wide range of boronic acid-to-catechol ratios, thus producing frameworks with compositions ranging from highly boronic acid-deficient to networks with catechol voids. Visualization of an -SH-functionalized modulating agent via iridium staining revealed that the COF domains are terminated by the modulator. Using functionalized modulators, this synthetic approach thus also provides a new and facile method for the external surface functionalization of COF domains, providing accessible sites for post-synthetic modification reactions. We demonstrate the feasibility of this concept by covalently attaching fluorescent dyes and hydrophilic polymers to the COF surface. We anticipate that the realization of highly crystalline COFs with the option of additional surface functionality will render the modulation concept beneficial for a range of applications, including gas separations, catalysis, and optoelectronics.

7.
Opt Express ; 24(3): 2505-12, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26906825

RESUMEN

We developed a new method for retrieving the group delay dispersion of a laser from Multiphoton Intra-pulse Interference Phase Scan (MIIPS) data. The method takes into account the spectral amplitude of the laser pulse and provides a direct feedback on the accuracy of the retrieval. The main advantage of the method derives from providing sufficiently high accuracy to avoid the need for multiple experimental iterations. Another advantage is that the new method can discriminate among pulses with different spectral phase and amplitude profiles, in which MIIPS traces occupy the same position in the phase-frequency MIIPS map.

8.
Nano Lett ; 15(2): 1141-5, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25616043

RESUMEN

We present a joint theory-experiment study on ultrafast photoluminescence from photoexcited graphene. On the basis of a microscopic theory, we reveal two distinct mechanisms behind the occurring photoluminescence: besides the well-known incoherent contribution driven by nonequilibrium carrier occupations, we found a coherent part that spectrally shifts with the excitation energy. In our experiments, we demonstrate for the first time the predicted appearance and spectral shift of the coherent photoluminescence.

9.
Nano Lett ; 15(8): 4968-72, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26121487

RESUMEN

We investigate near-degenerate four-wave mixing in graphene using femtosecond laser pulse shaping microscopy. Intense near-degenerate four-wave mixing signals on either side of the exciting laser spectrum are controlled by amplitude and phase shaping. Quantitative signal modeling for the input pulse parameters shows a spectrally flat phase response of the near-degenerate four-wave mixing due to the linear dispersion of the massless Dirac Fermions in graphene. Exploiting these properties we demonstrate that graphene is uniquely suited for the intrafocus phase characterization and compression of broadband laser pulses, circumventing disadvantages of common methods utilizing second or third harmonic light.

10.
Chem Soc Rev ; 43(4): 1248-62, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24100541

RESUMEN

Tip-enhanced near-field optical microscopy (TENOM) is a scanning probe technique capable of providing a broad range of spectroscopic information on single objects and structured surfaces at nanometer spatial resolution and with highest detection sensitivity. In this review, we first illustrate the physical principle of TENOM that utilizes the antenna function of a sharp probe to efficiently couple light to excitations on nanometer length scales. We then discuss the antenna-induced enhancement of different optical sample responses including Raman scattering, fluorescence, generation of photocurrent and electroluminescence. Different experimental realizations are presented and several recent examples that demonstrate the capabilities of the technique are reviewed.

11.
Nano Lett ; 14(7): 3773-8, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-24877611

RESUMEN

We report on the first antenna-enhanced optoelectronic microscopy studies on nanoscale devices. By coupling the emission and excitation to a scanning optical antenna, we are able to locally enhance the electroluminescence and photocurrent along a carbon nanotube device. We show that the emission source of the electroluminescence can be pointlike with a spatial extension below 20 nm. Topographic and antenna-enhanced photocurrent measurements reveal that the emission takes place at the location of highest local electric field indicating that the mechanism behind the emission is the radiative decay of excitons created via impact excitation.


Asunto(s)
Técnicas Electroquímicas/instrumentación , Mediciones Luminiscentes/instrumentación , Microscopía Confocal/instrumentación , Nanotubos de Carbono/ultraestructura , Nanotubos de Carbono/química
12.
J Am Chem Soc ; 136(51): 17802-7, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25412210

RESUMEN

Covalent organic frameworks (COFs) offer a strategy to position molecular semiconductors within a rigid network in a highly controlled and predictable manner. The π-stacked columns of layered two-dimensional COFs enable electronic interactions between the COF sheets, thereby providing a path for exciton and charge carrier migration. Frameworks comprising two electronically separated subunits can form highly defined interdigitated donor-acceptor heterojunctions, which can drive the photogeneration of free charge carriers. Here we report the first example of a photovoltaic device that utilizes exclusively a crystalline organic framework with an inherent type II heterojunction as the active layer. The newly developed triphenylene-porphyrin COF was grown as an oriented thin film with the donor and acceptor units forming one-dimensional stacks that extend along the substrate normal, thus providing an optimal geometry for charge carrier transport. As a result of the degree of morphological precision that can be achieved with COFs and the enormous diversity of functional molecular building blocks that can be used to construct the frameworks, these materials show great potential as model systems for organic heterojunctions and might ultimately provide an alternative to the current disordered bulk heterojunctions.

13.
ACS Appl Mater Interfaces ; 16(36): 48085-48093, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39193985

RESUMEN

Dibenzo[g,p]chrysene can be viewed as a constrained propeller-shaped tetraphenylethylene with reduced curvature and has been utilized to construct dual-pore kagome covalent organic frameworks (COFs) with tightly packed two-dimensional (2D) layers owing to its rigid and more planar structural characteristics. Here, we introduce 2D COFs based on the node 4,4',4″,4‴-(dibenzo[g,p]chrysene-2,7,10,15-tetraphenyl)tetraamine (DBCTPTA) featuring extended conjugation compared to the dibenzo[g,p]chrysene-3,6,11,14-tetraamine (DBCTA) node. We establish two exceptionally crystalline imine-linked 2D COFs with a hexagonal dual-pore kagome structure based on the DBCTPTA core. The newly synthesized thienothiophene (TT) and benzodithiophene (BDT)-based DBCTPTA COFs show a tight stacking behavior between adjacent layers. Furthermore, we obtained an unprecedented, interpenetrated electron-donor/acceptor host-guest system with an electron-donating BDT DBCTPTA COF synthesized in situ with the soluble fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) serving as molecular acceptor. The BDT DBCTPTA COF@PCBM film shows a much shorter amplitude-averaged PL lifetime of 7 ± 2 ps compared to 30 ± 4 ps of the BDT DBCTPTA COF film, indicating the light-induced charge transfer process. The successful in situ formation of interpenetrated donor-acceptor heterojunctions within 2D COFs offers a promising strategy for establishing D-A heterojunctions in diverse framework materials with open channel systems.

14.
J Mater Chem A Mater ; 12(19): 11635-11643, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38751728

RESUMEN

A better understanding of the materials' fundamental physical processes is necessary to push hybrid perovskite photovoltaic devices towards their theoretical limits. The role of the perovskite grain boundaries is essential to optimise the system thoroughly. The influence of the perovskite grain size and crystal orientation on physical properties and their resulting photovoltaic performance is examined. We develop a novel, straightforward synthesis approach that yields crystals of a similar size but allows the tuning of their orientation to either the (200) or (002) facet alignment parallel to the substrate by manipulating dimethyl sulfoxide (DMSO) and tetrahydrothiophene-1-oxide (THTO) ratios. This decouples crystal orientation from grain size, allowing the study of charge carrier mobility, found to be improved with larger grain sizes, highlighting the importance of minimising crystal disorder to achieve efficient devices. However, devices incorporating crystals with the (200) facet exhibit an s-shape in the current density-voltage curve when standard scan rates are used, which typically signals an energetic interfacial barrier. Using the drift-diffusion simulations, we attribute this to slower-moving ions (mobility of 0.37 × 10-10 cm2 V-1 s-1) in combination with a lower density of mobile ions. This counterintuitive result highlights that reducing ion migration does not necessarily minimise hysteresis.

15.
Nano Lett ; 12(1): 177-81, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22175822

RESUMEN

We report on the excitation of propagating surface plasmon polaritons in thin metal films by a single emitter. Upon excitation in the visible regime, individual semiconducting single-walled carbon nanotubes are shown to act as directional near-infrared point dipole sources launching propagating surface plasmons mainly along the direction of the nanotube axis. Plasmon excitation and propagation is monitored in Fourier and real space by leakage radiation microscopy and is modeled by rigorous theoretical calculations. Coupling to plasmons almost completely reshapes the emission of nanotubes both spatially and with respect to polarization as compared to photoluminescence on a dielectric substrate.


Asunto(s)
Metales/química , Modelos Químicos , Nanoestructuras/química , Resonancia por Plasmón de Superficie/métodos , Simulación por Computador , Luz , Ensayo de Materiales , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Dispersión de Radiación
16.
Eur J Pharm Biopharm ; 188: 170-181, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37196873

RESUMEN

In recent decades, biotechnological drugs have emerged as relevant therapeutic tools. However, therapeutic molecules can exert their activity only if properly formulated and delivered into the body. In this regard, nano-sized drug delivery systems have been shown to provide protection, stability, and controlled release of payloads, increasing their therapeutic efficacy. In this work, a microfluidic mixing technique for the preparation of chitosan-based nanoparticles was established with the capability of easily exchanging macromolecular biological cargos such as the model protein ß-Galactosidase, mRNA, and siRNA. The nanoparticles obtained showed hydrodynamic diameters ranging from 75 nm to 105 nm, low polydispersity of 0.15 to 0.22 and positive zeta potentials of 6 mV to 17 mV. All payloads were efficiently encapsulated (>80 %) and the well-known cytocompatibility of chitosan-based nanoparticles was confirmed. Cell culture studies demonstrated increased cellular internalization of loaded nano-formulations compared to free molecules as well as successful gene silencing with nano-formulated siRNA, suggesting the ability of these nanoparticles to escape the endosome.


Asunto(s)
Quitosano , Nanopartículas , Microfluídica , Sustancias Macromoleculares , ARN Interferente Pequeño/genética , Tamaño de la Partícula
17.
Nanoscale ; 15(15): 7154-7163, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37009757

RESUMEN

The transition metal dichalcogenide family of semiconducting two-dimensional materials has recently shown a prominent potential to be an ideal platform to study the exciton Mott transition into electron-hole plasma and liquid phases due to their strong Coulomb interactions. Here, we show that pulsed laser excitation at high pump fluences can induce this exciton Mott transition to an electron-hole plasma in mono and few-layer transition metal dichalcogenides at room temperature. The formation of an electron-hole plasma leads to a broadband light emission spanning from the near infrared to the visible region. In agreement with our theoretical calculations, the photoluminescence emission at high energies displays an exponential decay that directly reflects the electronic temperature - a characteristic fingerprint of unbound electron-hole pair recombination. Furthermore, two-pulse excitation correlation measurements were performed to study the dynamics of electronic cooling, which shows two decay time components, one of less than 100 fs and a slower component of few ps associated with the electron-phonon and phonon-lattice bath thermalizations, respectively. Our work may shed light on further studies of the exciton Mott transition into other two-dimensional materials and their heterostructures and its applications in nanolasers and other optoelectronic devices.

18.
Opt Lett ; 37(22): 4711-3, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23164888

RESUMEN

In this work, we demonstrate propagating surface plasmon polariton (SPP) coupled photoluminescence (PL) excitation of single-walled carbon nanotube (SWNT). SPPs were launched at a few micrometers from individually marked SWNT, and plasmon-coupled PL was recorded to determine the efficiency of this remote in-plane addressing scheme. The efficiency depends upon the following factors: (i) longitudinal and transverse distances between the SPP launching site and the location of the SWNT and (ii) orientation of the SWNT with respect to the plasmon propagation wave vector (k(SPP)). Our experiment explores the possible integration of carbon nanotubes as a plasmon sensor in plasmonic and nanophotonic devices.

19.
Chemphyschem ; 13(4): 927-9, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22162368

RESUMEN

High-resolution imaging and spectroscopy of single CdSe nanowires and carbon nanotubes using tip-enhanced near-field optical microscopy increases the optical excitation and emission rates within a nanoscale sample volume. The resulting signal enhancement for Raman scattering and photoluminescence as well as the tip-sample-distance dependence are investigated.

20.
Nat Commun ; 13(1): 6290, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271091

RESUMEN

Excitonic states govern the optical spectra of low-dimensional semiconductor nanomaterials and their dynamics are key for a wide range of applications, such as in solar energy harvesting and lighting. Semiconducting single-walled carbon nanotubes emerged as particularly rich model systems for one-dimensional nanomaterials and as such have been investigated intensively in the past. The exciton decay dynamics in nanotubes has been studied mainly by transient absorption and time-resolved photoluminescence spectroscopy. Since different transitions are monitored with these two techniques, developing a comprehensive model to reconcile different data sets, however, turned out to be a challenge and remarkably, a uniform description seems to remain elusive. In this work, we investigate the exciton decay dynamics in single carbon nanotubes using transient interferometric scattering and time-resolved photoluminescence microscopy with few-exciton detection sensitivity and formulate a unified microscopic model by combining unimolecular exciton decay and ultrafast exciton-exciton annihilation on a time-scale down to 200 fs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA