Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Environ Microbiol ; 26(6): e16639, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38899733

RESUMEN

The Great Pacific Garbage Patch, a significant collection of plastic introduced by human activities, provides an ideal environment to study bacterial lifestyles on plastic substrates. We proposed that bacteria colonizing the floating plastic debris would develop strategies to deal with the ultraviolet-exposed substrate, such as the production of antioxidant pigments. We observed a variety of pigmentation in 67 strains that were directly cultivated from plastic pieces sampled from the Garbage Patch. The genomic analysis of four representative strains, each distinct in taxonomy, revealed multiple pathways for carotenoid production. These pathways include those that produce less common carotenoids and a cluster of photosynthetic genes. This cluster appears to originate from a potentially new species of the Rhodobacteraceae family. This represents the first report of an aerobic anoxygenic photoheterotrophic bacterium from plastic biofilms. Spectral analysis showed that the bacteria actively produce carotenoids, such as beta-carotene and beta-cryptoxanthin, and bacteriochlorophyll a. Furthermore, we discovered that the genetic ability to synthesize carotenoids is more common in plastic biofilms than in the surrounding water communities. Our findings suggest that plastic biofilms could be an overlooked source of bacteria-produced carotenoids, including rare forms. It also suggests that photoreactive molecules might play a crucial role in bacterial biofilm communities in surface water.


Asunto(s)
Biopelículas , Carotenoides , Pigmentos Biológicos , Plásticos , Carotenoides/metabolismo , Biopelículas/crecimiento & desarrollo , Pigmentos Biológicos/metabolismo , Plásticos/metabolismo , Rhodobacteraceae/genética , Rhodobacteraceae/metabolismo , Rhodobacteraceae/clasificación , Filogenia , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Océano Pacífico
2.
Environ Microbiol ; 24(9): 4030-4048, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35656758

RESUMEN

Carbon cycling by Antarctic microbial plankton is poorly understood but it plays a major role in CO2 sequestration in the Southern Ocean. We investigated the summer bacterioplankton community in the largely understudied Weddell Sea, applying Illumina amplicon sequencing, measurements of bacterial production and chemical analyses of organic matter. The results revealed that the patchy distribution of productive coastal polynyas and less productive, mostly ice-covered sites was the major driver of the spatial changes in the taxonomic composition and activity of bacterioplankton. Gradients in organic matter availability induced by phytoplankton blooms were reflected in the concentrations and composition of dissolved carbohydrates and proteins. Bacterial production at bloom stations was, on average, 2.7 times higher than at less productive sites. Abundant bloom-responsive lineages were predominately affiliated with ubiquitous marine taxa, including Polaribacter, Yoonia-Loktanella, Sulfitobacter, the SAR92 clade, and Ulvibacter, suggesting a widespread genetic potential for adaptation to sub-zero seawater temperatures. A co-occurrence network analysis showed that dominant taxa at stations with low phytoplankton productivity were highly connected, indicating beneficial interactions. Overall, our study demonstrates that heterotrophic bacterial communities along Weddell Sea ice shelves were primarily constrained by the availability of labile organic matter rather than low seawater temperature.


Asunto(s)
Dióxido de Carbono , Flavobacteriaceae , Regiones Antárticas , Carbohidratos , Carbono , Flavobacteriaceae/genética , Fitoplancton , Plancton/genética , ARN Ribosómico 16S/genética , Agua de Mar/microbiología
3.
Appl Environ Microbiol ; 88(2): e0188621, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34788073

RESUMEN

Mutualistic nutrient cycling in the coral-algae symbiosis depends on limited nitrogen (N) availability for algal symbionts. Denitrifying prokaryotes capable of reducing nitrate or nitrite to dinitrogen could thus support coral holobiont functioning by limiting N availability. Octocorals show some of the highest denitrification rates among reef organisms; however, little is known about the community structures of associated denitrifiers and their response to environmental fluctuations. Combining 16S rRNA gene amplicon sequencing with nirS in-silico PCR and quantitative PCR, we found differences in bacterial community dynamics between two octocorals exposed to excess dissolved organic carbon (DOC) and concomitant warming. Although bacterial communities of the gorgonian Pinnigorgia flava remained largely unaffected by DOC and warming, the soft coral Xenia umbellata exhibited a pronounced shift toward Alphaproteobacteria dominance under excess DOC. Likewise, the relative abundance of denitrifiers was not altered in P. flava but decreased by 1 order of magnitude in X. umbellata under excess DOC, likely due to decreased proportions of Ruegeria spp. Given that holobiont C:N ratios remained stable in P. flava but showed a pronounced increase with excess DOC in X. umbellata, our results suggest that microbial community dynamics may reflect the nutritional status of the holobiont. Hence, denitrifier abundance may be directly linked to N availability. This suggests a passive regulation of N cycling microbes based on N availability, which could help stabilize nutrient limitation in the coral-algal symbiosis and thereby support holobiont functioning in a changing environment. IMPORTANCE Octocorals are important members of reef-associated benthic communities that can rapidly replace scleractinian corals as the dominant ecosystem engineers on degraded reefs. Considering the substantial change in the (a)biotic environment that is commonly driving reef degradation, maintaining a dynamic and metabolically diverse microbial community might contribute to octocoral acclimatization. Nitrogen (N) cycling microbes, in particular denitrifying prokaryotes, may support holobiont functioning by limiting internal N availability, but little is known about the identity and (a)biotic drivers of octocoral-associated denitrifiers. Here, we show contrasting dynamics of bacterial communities associated with two common octocoral species, the soft coral Xenia umbellata and the gorgonian Pinnigorgia flava after a 6-week exposure to excess dissolved organic carbon under concomitant warming conditions. The specific responses of denitrifier communities of the two octocoral species aligned with the nutritional status of holobiont members. This suggests a passive regulation based on N availability in the coral holobiont.


Asunto(s)
Antozoos , Microbiota , Animales , Antozoos/microbiología , Bacterias/genética , Arrecifes de Coral , Materia Orgánica Disuelta , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo
4.
Biol Rev Camb Philos Soc ; 99(4): 1218-1241, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38351434

RESUMEN

The nature and extent of diversity in the plankton has fascinated scientists for over a century. Initially, the discovery of many new species in the remarkably uniform and unstructured pelagic environment appeared to challenge the concept of ecological niches. Later, it became obvious that only a fraction of plankton diversity had been formally described, because plankton assemblages are dominated by understudied eukaryotic lineages with small size that lack clearly distinguishable morphological features. The high diversity of the plankton has been confirmed by comprehensive metabarcoding surveys, but interpretation of the underlying molecular taxonomies is hindered by insufficient integration of genetic diversity with morphological taxonomy and ecological observations. Here we use planktonic foraminifera as a study model and reveal the full extent of their genetic diversity and investigate geographical and ecological patterns in their distribution. To this end, we assembled a global data set of ~7600 ribosomal DNA sequences obtained from morphologically characterised individual foraminifera, established a robust molecular taxonomic framework for the observed diversity, and used it to query a global metabarcoding data set covering ~1700 samples with ~2.48 billion reads. This allowed us to extract and assign 1 million reads, enabling characterisation of the structure of the genetic diversity of the group across ~1100 oceanic stations worldwide. Our sampling revealed the existence of, at most, 94 distinct molecular operational taxonomic units (MOTUs) at a level of divergence indicative of biological species. The genetic diversity only doubles the number of formally described species identified by morphological features. Furthermore, we observed that the allocation of genetic diversity to morphospecies is uneven. Only 16 morphospecies disguise evolutionarily significant genetic diversity, and the proportion of morphospecies that show genetic diversity increases poleward. Finally, we observe that MOTUs have a narrower geographic distribution than morphospecies and that in some cases the MOTUs belonging to the same morphospecies (cryptic species) have different environmental preferences. Overall, our analysis reveals that even in the light of global genetic sampling, planktonic foraminifera diversity is modest and finite. However, the extent and structure of the cryptic diversity reveals that genetic diversification is decoupled from morphological diversification, hinting at different mechanisms acting at different levels of divergence.


Asunto(s)
Foraminíferos , Variación Genética , Plancton , Foraminíferos/genética , Foraminíferos/clasificación , Plancton/genética , Plancton/clasificación , Especiación Genética , Código de Barras del ADN Taxonómico
5.
Sci Rep ; 13(1): 12578, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537233

RESUMEN

Among the most successful Lessepsian invaders is the symbiont-bearing benthic foraminifera Amphistegina lobifera. In its newly conquered habitat, this prolific calcifier and ecosystem engineer is exposed to environmental conditions that exceed the range of its native habitat. To disentangle which processes facilitated the invasion success of A. lobifera into the Mediterranean Sea we analyzed a ~ 1400 bp sequence fragment covering the SSU and ITS gene markers to compare the populations from its native regions and along the invasion gradient. The genetic variability was studied at four levels: intra-genomic, population, regional and geographical. We observed that the invasion is not associated with genetic differentiation, but the invasive populations show a distinct suppression of intra-genomic variability among the multiple copies of the rRNA gene. A reduced genetic diversity compared to the Indopacific is observed already in the Red Sea populations and their high dispersal potential into the Mediterranean appears consistent with a bridgehead effect resulting from the postglacial expansion from the Indian Ocean into the Red Sea. We conclude that the genetic structure of the invasive populations reflects two processes: high dispersal ability of the Red Sea source population pre-adapted to Mediterranean conditions and a likely suppression of sexual reproduction in the invader. This discovery provides a new perspective on the cost of invasion in marine protists: The success of the invasive A. lobifera in the Mediterranean Sea comes at the cost of abandonment of sexual reproduction.


Asunto(s)
Ecosistema , Foraminíferos , Foraminíferos/genética , Mar Mediterráneo , Océano Índico , Reproducción
6.
Front Microbiol ; 14: 1216130, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37840736

RESUMEN

Nitrososphaeria in the phylum Crenarchaeota, is a widespread archaeal class in the oceanic realm, playing an important role in the marine carbon and nitrogen cycle. Nitrososphaeria-derived membrane lipids, i.e., isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs), are commonly employed to reconstruct past water temperatures using the TetraEther indeX of 86 carbon atoms (TEX86). This index is of particular importance for the brackish Baltic Sea as to date it appears to be the only applicable organic temperature proxy. In this study, we investigated the distribution of intact and core GDGTs and their potential source organisms in the water column of three deep basins located in the central Baltic Sea to evaluate the application of TEX86. A lipidomic approach on suspended particulate matter was combined with the molecular techniques 16S rRNA gene amplicon sequencing and CARD-FISH. The archaeal community was dominated by Nitrosopumilus (~83-100% of the total archaeal sequences). As other detected taxa known to produce GDGTs each represented less than 2% of the total archaeal sequences, Nitrosopumilus is likely the most dominant GDGT producer in the central Baltic Sea. However, the occurrence of phosphohexose (PH), instead of hexose-phosphohexose (HPH) headgroups, suggested that Nitrosopumilus in the Baltic Sea may differ physiologically from representatives of marine settings and other marginal seas, such as the Black Sea. In the Baltic Sea, Nitrosopumilus is most abundant in the suboxic zone, where intact cells peak according to both CARD-FISH data and intact polar lipid concentrations. The presented data therefore suggest that TEX86 reflects subsurface rather than surface temperature in the central Baltic Sea.

7.
Front Microbiol ; 13: 1082763, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36687591

RESUMEN

Nodularia spumigena is a toxic, filamentous cyanobacterium capable of fixing atmospheric N2, which is often dominating cyanobacterial bloom events in the Baltic Sea and other brackish water systems worldwide. Increasing phosphate limitation has been considered as one environmental factor promoting cyanobacterial mass developments. In the present study, we analyzed the response of N. spumigena strain CCY9414 toward strong phosphate limitation. Growth of the strain was diminished under P-deplete conditions; however, filaments contained more polyphosphate under P-deplete compared to P-replete conditions. Using RNA-seq, gene expression was compared in N. spumigena CCY9414 after 7 and 14 days in P-deplete and P-replete conditions, respectively. After 7 days, 112 genes were significantly up-regulated in P-deplete filaments, among them was a high proportion of genes encoding proteins related to P-homeostasis such as transport systems for different P species. Many of these genes became also up-regulated after 14 days compared to 7 days in filaments grown under P-replete conditions, which was consistent with the almost complete consumption of dissolved P in these cultures after 14 days. In addition to genes directly related to P starvation, genes encoding proteins for bioactive compound synthesis, gas vesicles formation, or sugar catabolism were stimulated under P-deplete conditions. Collectively, our data describe an experimentally validated P-stimulon in N. spumigena CCY9414 and provide the indication that severe P limitation could indeed support bloom formation by this filamentous strain.

8.
Nat Commun ; 13(1): 7135, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36414628

RESUMEN

The biotic crisis following the end-Cretaceous asteroid impact resulted in a dramatic renewal of pelagic biodiversity. Considering the severe and immediate effect of the asteroid impact on the pelagic environment, it is remarkable that some of the most affected pelagic groups, like the planktonic foraminifera, survived at all. Here we queried a surface ocean metabarcoding dataset to show that calcareous benthic foraminifera of the clade Globothalamea are able to disperse actively in the plankton, and we show using molecular clock phylogeny that the modern planktonic clades originated from different benthic ancestors that colonized the plankton after the end-Cretaceous crisis. We conclude that the diversity of planktonic foraminifera has been the result of a constant leakage of benthic foraminifera diversity into the plankton, continuously refueling the planktonic niche, and challenge the classical interpretation of the fossil record that suggests that Mesozoic planktonic foraminifera gave rise to the modern communities.


Asunto(s)
Foraminíferos , Foraminíferos/genética , Plancton/genética , Extinción Biológica , Planetas Menores , Fósiles
9.
PLoS One ; 15(6): e0235235, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32598345

RESUMEN

Mobile Bay, the fourth largest estuary in the USA located in the northern Gulf of Mexico, is known for extreme hypoxia in the water column during dry season caused by NH4+-rich and anoxic submarine groundwater discharge (SGD). Nutrient dynamics in the coastal ecosystem point to potentially elevated microbial activities; however, little is known about microbial community composition and their functional roles in this area. In this study, we investigated microbial community composition, distribution, and metabolic prediction along the coastal hydrological compartment of Mobile Bay using 16S rRNA gene sequencing. We collected microbial samples from surface (river and bay water) and subsurface water (groundwater and coastal pore water from two SGD sites with peat and sandy lithology, respectively). Salinity was identified as the primary factor affecting the distribution of microbial communities across surface water samples, while DON and PO43- were the major predictor of community shift within subsurface water samples. Higher microbial diversity was found in coastal pore water in comparison to surface water samples. Gammaproteobacteria, Bacteroidia, and Oxyphotobacteria dominated the bacterial community. Among the archaea, methanogens were prevalent in the peat-dominated SGD site, while the sandy SGD site was characterized by a higher proportion of ammonia-oxidizing archaea. Cyanobium PCC-6307 and unclassified Thermodesulfovibrionia were identified as dominant taxa strongly associated with trends in environmental parameters in surface and subsurface samples, respectively. Microbial communities found in the groundwater and peat layer consisted of taxa known for denitrification and dissimilatory nitrate reduction to ammonium (DNRA). This finding suggested that microbial communities might also play a significant role in mediating nitrogen transformation in the SGD flow path and in affecting the chemical composition of SGD discharging to the water column. Given the ecological importance of microorganisms, further studies at higher taxonomic and functional resolution are needed to accurately predict chemical biotransformation processes along the coastal hydrological continuum, which influence water quality and environmental condition in Mobile Bay.


Asunto(s)
Monitoreo del Ambiente/métodos , Agua Subterránea/análisis , Agua Subterránea/microbiología , Microbiota , Agua de Mar/análisis , Agua de Mar/microbiología , Golfo de México , Hidrología , ARN Ribosómico 16S/análisis , Movimientos del Agua
10.
Microorganisms ; 9(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375015

RESUMEN

Milkfish, an important aquaculture species in Asian countries, are traditionally cultured in outdoor-based systems. There, they experience potentially stressful fluctuations in environmental conditions, such as temperature, eliciting changes in fish physiology. While the importance of the gut microbiome for the welfare and performance of fish has been recognized, little is known about the effects of thermal stress on the gut microbiome of milkfish and its interactions with the host's metabolism. We investigated the gut microbiome of juvenile milkfish in a thermal stress experiment, comparing control (26 °C) and elevated temperature (33 °C) treatments over three weeks, analyzing physiological biomarkers, gut microbiome composition, and tank water microbial communities using 16S amplicon sequencing. The gut microbiome was distinct from the tank water and dominated by Cetobacterium, Enterovibrio, and Vibrio. We observed a parallel succession in both temperature treatments, with microbial communities at 33 °C differing more strongly from the control after the initial temperature increase and becoming more similar towards the end of the experiment. As proxy for the fish's energy status, HSI (hepatosomatic index) was correlated with gut microbiome composition. Our study showed that thermal stress induced changes in the milkfish gut microbiome, which may contribute to the host's habituation to elevated temperatures over time.

11.
Sci Rep ; 10(1): 11980, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32686764

RESUMEN

Bacterial diseases cause production failures in shrimp aquacultures. To understand environmental conditions and bacterial community dynamics contributing to white faeces disease (WFD) events, we analysed water quality and compared bacterial communities in water as well as in intestines and faeces of healthy and diseased shrimps, respectively, via 16S rRNA gene sequencing and qPCR of transmembrane regulatory protein (toxR), thermolabile haemolysin (tlh), and thermostable direct haemolysin genes of pathogenic Vibrio parahaemolyticus as a proxy for virulence. WFD occurred when pH decreased to 7.71-7.84, and Alteromonas, Pseudoalteromonas and Vibrio dominated the aquatic bacterial communities. The disease severity further correlated with increased proportions of Alteromonas, Photobacterium, Pseudoalteromonas and Vibrio in shrimp faeces. These opportunistic pathogenic bacteria constituted up to 60% and 80% of the sequences in samples from the early and advances stages of the disease outbreak, respectively, and exhibited a high degree of co-occurrence. Furthermore, toxR and tlh were detected in water at the disease event only. Notably, bacterial community resilience in water occurred when pH was adjusted to 8. Then WFD ceased without a mortality event. In conclusion, pH was a reliable indicator of the WFD outbreak risk. Dissolved oxygen and compositions of water and intestinal bacteria may also serve as indicators for better prevention of WFD events.


Asunto(s)
Acuicultura , Bacterias/crecimiento & desarrollo , Brotes de Enfermedades , Heces/microbiología , Penaeidae/microbiología , Animales , Bacterias/genética , Bacterias/patogenicidad , Genes Bacterianos , Filogenia , Estanques/microbiología , Análisis de Componente Principal , Virulencia/genética , Microbiología del Agua
12.
mSystems ; 5(5)2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082281

RESUMEN

Mangrove ecosystems provide important ecological benefits and ecosystem services, including carbon storage and coastline stabilization, but they also suffer great anthropogenic pressures. Microorganisms associated with mangrove sediments and the rhizosphere play key roles in this ecosystem and make essential contributions to its productivity and carbon budget. Understanding this nexus and moving from descriptive studies of microbial taxonomy to hypothesis-driven field and lab studies will facilitate a mechanistic understanding of mangrove ecosystem interaction webs and open opportunities for microorganism-mediated approaches to mangrove protection and rehabilitation. Such an effort calls for a multidisciplinary and collaborative approach, involving chemists, ecologists, evolutionary biologists, microbiologists, oceanographers, plant scientists, conservation biologists, and stakeholders, and it requires standardized methods to support reproducible experiments. Here, we outline the Mangrove Microbiome Initiative, which is focused around three urgent priorities and three approaches for advancing mangrove microbiome research.

13.
Sci Total Environ ; 689: 590-601, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31279205

RESUMEN

Submarine groundwater discharge (SGD) can be an important pathway for chemical or biological pollutants from land to the ocean around the world. However, studies on the microbial communities associated with SGD in Southeast Asia, which has been hypothesized as SGD hotspot, remain scarce. In this study, we examined the microbial community composition with 16S rRNA gene sequencing along the hydrological continuum of an SGD site in a tropical urban area of Indonesia. Of the observed parameters in this study, salinity and temperature were the most determinant variables explaining patterns in microbial community composition. The bacterial taxon Burkholderiaceae was predominantly found in low salinity samples, including those from terrestrial groundwater and brackish pore water, while cyanobacteria of the genus Synechococcus sp. CC9902 were indicative of saline SGD and seawater samples. The composition of microbial taxa in each sample pointed to the influence of shallow terrestrial groundwater in the beach pore water, while seawater recirculation dominated the SGD sampling points situated further offshore. We identified taxa containing fecal indicators and potential pathogens at the SGD compartments; however, while a likely explanation, we could not conclude with certainty that SGD was a conduit for these bacteria. Overall, the results from this study show that microbial community analysis can highlight hydrological processes and water quality at the SGD site; thus, they could be useful for environmental policymakers to formulate water management strategies in coastal areas.


Asunto(s)
Agua Subterránea/análisis , Microbiota/fisiología , Agua de Mar/microbiología , Agua Subterránea/microbiología , Hidrología , Indonesia , Microbiota/genética , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Análisis de Secuencia de ARN , Movimientos del Agua
14.
FEMS Microbiol Ecol ; 95(2)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649441

RESUMEN

Marine aquaculture is a major industry that supports the economy in many countries, including the Philippines. However, excess feeds and fish waste generated by mariculture activities contribute an immense nutrient load to the environment that can affect the underlying sediment. To better understand these impacts, we compared the physicochemical characteristics and microbial community composition of sediments taken at a fish cage and an off cage site in Bolinao, Philippines. Sediments and pore water at the fish cage site showed evidence of greater organic enrichment relative to the off cage site. Under these conditions, we found lower relative abundance of dissimilatory sulfate reductase and nitrite reductase genes, suggesting shifts in prevalent nutrient cycling processes. This is further supported by 16S rRNA gene sequencing that revealed differences in the community composition between sites. Fish cage sediments favored the growth of taxa that thrive in anaerobic, organic carbon-enriched environments, such as members of class Anaerolineae, which can potentially serve as bioindicators of eutrophication in sediments. This study demonstrates that intensive mariculture activity can cause eutrophic sediment conditions that influence microbial community structure and function.


Asunto(s)
Chloroflexi/fisiología , Explotaciones Pesqueras/estadística & datos numéricos , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Microbiota/fisiología , Animales , Acuicultura , Eutrofización , Peces , Nitrito Reductasas/genética , Filipinas , ARN Ribosómico 16S/genética , Alimentos Marinos , Sulfatos/análisis
15.
Sci Rep ; 9(1): 6468, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015576

RESUMEN

Biological soil crusts (biocrusts) occur within drylands throughout the world, covering ~12% of the global terrestrial soil surface. Their occurrence in the deserts of the Arabian Peninsula has rarely been reported and their spatial distribution, diversity, and microbial composition remained largely unexplored. We investigated biocrusts at six different locations in the coastal and central deserts of Oman. The biocrust types were characterized, and the bacterial and fungal community compositions of biocrusts and uncrusted soils were analysed by amplicon sequencing. The results were interpreted based on the environmental parameters of the different sites. Whereas at lowland sites, mainly cyanobacteria-dominated biocrusts were observed, both cyanobacteria- and lichen-dominated biocrusts occurred at mountain sites. The majority of bacterial sequences (32-83% of total sequences) belonged to Actinobacteria, Cyanobacteria, Alphaproteobacteria, and Bacteroidetes, whereas fungal sequences belonged to Ascomycota, Basidiomycota, and Chytridiomycota (>95%). With biocrust development, a notable increase in cyanobacterial and decrease in actinobacterial proportions was observed for cyanobacteria-dominated crusts. In coastal areas, where salinity is high, biocrusts were replaced by a unique marine mat-like microbial community, dominated by halotolerant taxa. Redundancy analysis revealed a significant contribution of soil texture, cover type, carbon content, and elevation to the variations in bacterial and fungal communities. Multivariate analysis placed microbial communities in significantly separated clusters based on their carbon content, elevation and electrical conductivity. We conclude that Oman hosts a variety of cyanobacteria- and lichen-dominated crusts with their bacterial and fungal communities being largely dictated by soil properties and environmental parameters.


Asunto(s)
Bacterias , Biodiversidad , Clima Desértico , Hongos , Micobioma , Microbiología del Suelo , Suelo , Animales , Bacterias/clasificación , Bacterias/genética , Hongos/clasificación , Hongos/genética , Omán
16.
Front Microbiol ; 9: 2457, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30405548

RESUMEN

In shrimp aquaculture, farming systems are carefully managed to avoid rearing failure due to stress, disease, or mass mortality, and to achieve optimum shrimp production. However, little is known about how shrimp farming systems affect biogeochemical parameters and bacterial communities in rearing water, whether high stocking densities (intensive system) will increase the abundance of pathogenic bacteria. In this study, we characterized bacterial communities in shrimp ponds with different population densities. Water quality, such as physical parameters, inorganic nutrient concentrations, and cultivable heterotrophic bacterial abundances, including potential pathogenic Vibrio, were determined in moderate density/semi-intensive (40 post-larvae m-3) and high density/intensive shrimp ponds (90 post-larvae m-3), over the shrimp cultivation time. Free-living and particle-attached bacterial communities were characterized by amplicon sequencing of the 16S rRNA gene. Suspended particulate matter (SPM), salinity, chlorophyll a, pH, and dissolved oxygen differed significantly between semi-intensive and intensive systems. These variations contrasted with the equal abundance of cultivable heterotrophic bacteria and inorganic nutrient concentrations. Bacterial communities were dominated by Gammaproteobacteria, Alphaproteobacteria, Flavobacteriia, Bacilli, and Actinobacteria. Halomonas and Psychrobacter were the most dominant genera in the particle-attached fractions, while Salegentibacter, Sulfitobacter, and Halomonas were found in the free-living fractions of both systems. Redundancy analysis indicated that among the observed environmental parameters, salinity was best suited to explain patterns in the composition of both free-living and particle-attached bacterial communities (R 2: 15.32 and 12.81%, respectively), although a large fraction remained unexplained. Based on 16S rRNA gene sequences, aggregated particles from intensive ponds loaded a higher proportion of Vibrio than particles from semi-intensive ponds. In individual ponds, sequence proportions of Vibrio and Halomonas displayed an inverse relationship that coincided with changes in pH. Our observations suggest that high pH-values may suppress Vibrio populations and eventually pathogenic Vibrio. Our study showed that high-density shrimp ponds had a higher prevalence of Vibrio, increased amounts of SPM, and higher phytoplankton abundances. To avoid rearing failure, these parameters have to be managed carefully, for example by providing adequate feed, maintaining pH level, and removing organic matter deposits regularly.

17.
PeerJ ; 6: e5984, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30533298

RESUMEN

Bacteria play a crucial role in the marine carbon cycle, contributing to the production and degradation of organic carbon. Here, we investigated organic carbon pools, aggregate formation, and bacterioplankton communities in three contrasting oceanographic settings in the Galapagos Archipelago. We studied a submarine CO2 vent at Roca Redonda (RoR), an upwelling site at Bolivar Channel (BoC) subjected to a weak El Niño event at the time of sampling in October 2014, as well as a site without volcanic or upwelling influence at Cowley Islet (CoI). We recorded physico-chemical parameters, and quantified particulate and dissolved organic carbon, transparent exopolymeric particles, and the potential of the water to form larger marine aggregates. Free-living and particle-attached bacterial communities were assessed via 16S rRNA gene sequencing. Both RoR and BoC exhibited temperatures elevated by 1-1.5 °C compared to CoI. RoR further experienced reduced pH between 6.8 and 7.4. We observed pronounced differences in organic carbon pools at each of the three sites, with highest dissolved organic carbon concentrations at BoC and RoR, and highest particulate organic carbon concentrations and aggregate formation at BoC. Bacterioplankton communities at BoC were dominated by opportunistic copiotrophic taxa, such as Alteromonas and Roseobacter, known to thrive in phytoplankton blooms, as opposed to oligotrophic taxa dominating at CoI, such as members of the SAR11 clade. Therefore, we propose that bacterial communities were mainly influenced by the availability of organic carbon at the investigated sites. Our study provides a comprehensive characterization of organic carbon pools and bacterioplankton communities, highlighting the high heterogeneity of various components of the marine carbon cycle around the Galapagos Archipelago.

18.
Front Microbiol ; 9: 2836, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30532746

RESUMEN

Saharan dust input and seasonal upwelling along North-West Africa provide a model system for studying microbial processes related to the export and recycling of nutrients. This study offers the first molecular characterization of prokaryotic particle-attached (PA; >3.0 µm) and free-living (FL; 0.2-3.0 µm) players in this important ecosystem during August 2016. Environmental drivers for alpha-diversity, bacterial community composition, and differences between FL and PA fractions were identified. The ultra-oligotrophic waters off Senegal were dominated by Cyanobacteria while higher relative abundances of Alphaproteobacteria, Bacteroidetes, Verrucomicrobia, and Planctomycetes (known particle-degraders) occurred in the upwelling area. Temperature, proxy for different water masses, was the best predictor for changes in FL communities. PA community variation was best explained by temperature and ammonium. Bray Curtis dissimilarities between FL and PA were generally very high and correlated with temperature and salinity in surface waters. Greatest similarities between FL and PA occurred at the deep chlorophyll maximum, where bacterial substrate availability was likely highest. This indicates that environmental drivers do not only influence changes among FL and PA communities but also differences between them. This could provide an explanation for contradicting results obtained by different studies regarding the dissimilarity/similarity between FL and PA communities and their biogeochemical functions.

19.
PeerJ ; 6: e4555, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29761035

RESUMEN

Water quality deterioration caused by an enrichment in inorganic and organic matter due to anthropogenic inputs is one of the major local threats to coral reefs in Indonesia. However, even though bacteria are important mediators in coral reef ecosystems, little is known about the response of individual taxa and whole bacterial communities to these anthropogenic inputs. The present study is the first to investigate how bacterial community composition responds to small-scale changes in water quality in several coral reef habitats of the Spermonde Archipelago including the water column, particles, and back-reef sediments, on a densely populated and an uninhabited island. The main aims were to elucidate if (a) water quality indicators and organic matter concentrations differ between the uninhabited and the densely populated island of the archipelago, and (b) if there are differences in bacterial community composition in back-reef sediments and in the water column, which are associated with differences in water quality. Several key water quality parameters, such as inorganic nitrate and phosphate, chlorophyll a, and transparent exopolymer particles (TEP) were significantly higher at the inhabited than at the uninhabited island. Bacterial communities in sediments and particle-attached communities were significantly different between the two islands with bacterial taxa commonly associated with nutrient and organic matter-rich conditions occurring in higher proportions at the inhabited island. Within the individual reef habitats, variations in bacterial community composition between the islands were associated with differences in water quality. We also observed that copiotrophic, opportunistic bacterial taxa were enriched at the inhabited island with its higher chlorophyll a, dissolved organic carbon and TEP concentrations. Given the increasing strain on tropical coastal ecosystems, this study suggests that effluents from densely populated islands lacking sewage treatment can alter bacterial communities that may be important for coral reef ecosystem function.

20.
Front Microbiol ; 8: 266, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28286496

RESUMEN

Benthic deep-sea communities are largely dependent on particle flux from surface waters. In the Arctic Ocean, environmental changes occur more rapidly than in other ocean regions, and have major effects on the export of organic matter to the deep sea. Because bacteria constitute the majority of deep-sea benthic biomass and influence global element cycles, it is important to better understand how changes in organic matter input will affect bacterial communities at the Arctic seafloor. In a multidisciplinary ex situ experiment, benthic bacterial deep-sea communities from the Long-Term Ecological Research Observatory HAUSGARTEN were supplemented with different types of habitat-related detritus (chitin, Arctic algae) and incubated for 23 days under in situ conditions. Chitin addition caused strong changes in community activity, while community structure remained similar to unfed control incubations. In contrast, the addition of phytodetritus resulted in strong changes in community composition, accompanied by increased community activity, indicating the need for adaptation in these treatments. High-throughput sequencing of the 16S rRNA gene and 16S rRNA revealed distinct taxonomic groups of potentially fast-growing, opportunistic bacteria in the different detritus treatments. Compared to the unfed control, Colwelliaceae, Psychromonadaceae, and Oceanospirillaceae increased in relative abundance in the chitin treatment, whereas Flavobacteriaceae, Marinilabiaceae, and Pseudoalteromonadaceae increased in the phytodetritus treatments. Hence, these groups may constitute indicator taxa for the different organic matter sources at this study site. In summary, differences in community structure and in the uptake and remineralization of carbon in the different treatments suggest an effect of organic matter quality on bacterial diversity as well as on carbon turnover at the seafloor, an important feedback mechanism to be considered in future climate change scenarios.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA