Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38475100

RESUMEN

Camera traps, an invaluable tool for biodiversity monitoring, capture wildlife activities day and night. In low-light conditions, near-infrared (NIR) imaging is commonly employed to capture images without disturbing animals. However, the reflection properties of NIR light differ from those of visible light in terms of chrominance and luminance, creating a notable gap in human perception. Thus, the objective is to enrich near-infrared images with colors, thereby bridging this domain gap. Conventional colorization techniques are ineffective due to the difference between NIR and visible light. Moreover, regular supervised learning methods cannot be applied because paired training data are rare. Solutions to such unpaired image-to-image translation problems currently commonly involve generative adversarial networks (GANs), but recently, diffusion models gained attention for their superior performance in various tasks. In response to this, we present a novel framework utilizing diffusion models for the colorization of NIR images. This framework allows efficient implementation of various methods for colorizing NIR images. We show NIR colorization is primarily controlled by the translation of the near-infrared intensities to those of visible light. The experimental evaluation of three implementations with increasing complexity shows that even a simple implementation inspired by visible-near-infrared (VIS-NIR) fusion rivals GANs. Moreover, we show that the third implementation is capable of outperforming GANs. With our study, we introduce an intersection field joining the research areas of diffusion models, NIR colorization, and VIS-NIR fusion.

2.
Sensors (Basel) ; 22(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36501782

RESUMEN

The development and application of modern technology are an essential basis for the efficient monitoring of species in natural habitats to assess the change of ecosystems, species communities and populations, and in order to understand important drivers of change. For estimating wildlife abundance, camera trapping in combination with three-dimensional (3D) measurements of habitats is highly valuable. Additionally, 3D information improves the accuracy of wildlife detection using camera trapping. This study presents a novel approach to 3D camera trapping featuring highly optimized hardware and software. This approach employs stereo vision to infer the 3D information of natural habitats and is designated as StereO CameRA Trap for monitoring of biodivErSity (SOCRATES). A comprehensive evaluation of SOCRATES shows not only a 3.23% improvement in animal detection (bounding box mAP75), but also its superior applicability for estimating animal abundance using camera trap distance sampling. The software and documentation of SOCRATES is openly provided.


Asunto(s)
Animales Salvajes , Ecosistema , Animales , Biodiversidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA