Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Trends Genet ; 40(6): 511-525, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641471

RESUMEN

Ribonucleases (RNases) play important roles in supporting canonical and non-canonical roles of tRNAs by catalyzing the cleavage of the tRNA phosphodiester backbone. Here, we highlight how recent advances in cryo-electron microscopy (cryo-EM), protein structure prediction, reconstitution experiments, tRNA sequencing, and other studies have revealed new insight into the nucleases that process tRNA. This represents a very diverse group of nucleases that utilize distinct mechanisms to recognize and cleave tRNA during different stages of a tRNA's life cycle including biogenesis, fragmentation, surveillance, and decay. In this review, we provide a synthesis of the structure, mechanism, regulation, and modes of tRNA recognition by tRNA nucleases, along with open questions for future investigation.


Asunto(s)
Microscopía por Crioelectrón , ARN de Transferencia , Ribonucleasas , ARN de Transferencia/genética , ARN de Transferencia/química , Ribonucleasas/genética , Ribonucleasas/química , Ribonucleasas/metabolismo , Humanos , Conformación de Ácido Nucleico
2.
J Biol Chem ; 299(9): 105138, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37544645

RESUMEN

Through its role in intron cleavage, tRNA splicing endonuclease (TSEN) plays a critical function in the maturation of intron-containing pre-tRNAs. The catalytic mechanism and core requirement for this process is conserved between archaea and eukaryotes, but for decades, it has been known that eukaryotic TSENs have evolved additional modes of RNA recognition, which have remained poorly understood. Recent research identified new roles for eukaryotic TSEN, including processing or degradation of additional RNA substrates, and determined the first structures of pre-tRNA-bound human TSEN complexes. These recent discoveries have changed our understanding of how the eukaryotic TSEN targets and recognizes substrates. Here, we review these recent discoveries, their implications, and the new questions raised by these findings.


Asunto(s)
Endorribonucleasas , Eucariontes , Precursores del ARN , Empalme del ARN , ARN de Transferencia , Humanos , Intrones/genética , Conformación de Ácido Nucleico , Precursores del ARN/química , Precursores del ARN/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Especificidad por Sustrato , Eucariontes/enzimología , Endorribonucleasas/química , Endorribonucleasas/metabolismo
3.
Nucleic Acids Res ; 48(14): 7609-7622, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32476018

RESUMEN

The splicing of tRNA introns is a critical step in pre-tRNA maturation. In archaea and eukaryotes, tRNA intron removal is catalyzed by the tRNA splicing endonuclease (TSEN) complex. Eukaryotic TSEN is comprised of four core subunits (TSEN54, TSEN2, TSEN34 and TSEN15). The human TSEN complex additionally co-purifies with the polynucleotide kinase CLP1; however, CLP1's role in tRNA splicing remains unclear. Mutations in genes encoding all four TSEN subunits, as well as CLP1, are known to cause neurodegenerative disorders, yet the mechanisms underlying the pathogenesis of these disorders are unknown. Here, we developed a recombinant system that produces active TSEN complex. Co-expression of all four TSEN subunits is required for efficient formation and function of the complex. We show that human CLP1 associates with the active TSEN complex, but is not required for tRNA intron cleavage in vitro. Moreover, RNAi knockdown of the Drosophila CLP1 orthologue, cbc, promotes biogenesis of mature tRNAs and circularized tRNA introns (tricRNAs) in vivo. Collectively, these and other findings suggest that CLP1/cbc plays a regulatory role in tRNA splicing by serving as a negative modulator of the direct tRNA ligation pathway in animal cells.


Asunto(s)
Endorribonucleasas/metabolismo , Precursores del ARN/metabolismo , ARN de Transferencia/metabolismo , Proteínas de Drosophila/fisiología , Exones , Humanos , Intrones , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Fosfotransferasas/metabolismo , Fosfotransferasas/fisiología , División del ARN , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
4.
Biochemistry ; 57(2): 241-254, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29303250

RESUMEN

Lipoprotein lipase (LPL) is a dimeric enzyme that is responsible for clearing triglyceride-rich lipoproteins from the blood. Although LPL plays a key role in cardiovascular health, an experimentally derived three-dimensional structure has not been determined. Such a structure would aid in understanding mutations in LPL that cause familial LPL deficiency in patients and help in the development of therapeutic strategies to target LPL. A major obstacle to structural studies of LPL is that LPL is an unstable protein that is difficult to produce in the quantities needed for nuclear magnetic resonance or crystallography. We present updated LPL structural models generated by combining disulfide mapping, computational modeling, and data derived from single-molecule Förster resonance energy transfer (smFRET). We pioneer the technique of smFRET for use with LPL by developing conditions for imaging active LPL and identifying positions in LPL for the attachment of fluorophores. Using this approach, we measure LPL-LPL intermolecular interactions to generate experimental constraints that inform new computational models of the LPL dimer structure. These models suggest that LPL may dimerize using an interface that is different from the dimerization interface suggested by crystal packing contacts seen in structures of pancreatic lipase.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Imagen Individual de Molécula/métodos , Biotinilación , Biología Computacional , Cisteína/química , Dimerización , Células HEK293 , Humanos , Lipoproteína Lipasa/química , Lipoproteína Lipasa/genética , Lipoproteínas/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Conformación Proteica , Proteínas Recombinantes/química , Triglicéridos/metabolismo
5.
Biochemistry ; 56(3): 525-533, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-27984852

RESUMEN

Lipoprotein lipase (LPL) is responsible for the hydrolysis of triglycerides from circulating lipoproteins. Whereas most identified mutations in the LPL gene are deleterious, one mutation, LPLS447X, causes a gain of function. This mutation truncates two amino acids from LPL's C-terminus. Carriers of LPLS447X have decreased VLDL levels and increased HDL levels, a cardioprotective phenotype. LPLS447X is used in Alipogene tiparvovec, the gene therapy product for individuals with familial LPL deficiency. It is unclear why LPLS447X results in a serum lipid profile more favorable than that of LPL. In vitro reports vary as to whether LPLS447X is more active than LPL. We report a comprehensive, biochemical comparison of purified LPLS447X and LPL dimers. We found no difference in specific activity on synthetic and natural substrates. We also did not observe a difference in the Ki for ANGPTL4 inhibition of LPLS447X relative to that of LPL. Finally, we analyzed LPL-mediated uptake of fluorescently labeled lipoprotein particles and found that LPLS447X enhanced lipoprotein uptake to a greater degree than LPL did. An LPL structural model suggests that the LPLS447X truncation exposes residues implicated in LPL binding to uptake receptors.


Asunto(s)
HDL-Colesterol/química , LDL-Colesterol/química , Lipoproteína Lipasa/química , Mutación , Receptores de Lipoproteína/química , Triglicéridos/química , Proteína 4 Similar a la Angiopoyetina , Angiopoyetinas/química , Angiopoyetinas/genética , Angiopoyetinas/metabolismo , Animales , Transporte Biológico , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , VLDL-Colesterol/química , VLDL-Colesterol/metabolismo , Expresión Génica , Humanos , Hiperlipidemias/sangre , Hiperlipidemias/genética , Hiperlipidemias/patología , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Ratones , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Estructura Secundaria de Proteína , Receptores de Lipoproteína/genética , Receptores de Lipoproteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química , Serina/metabolismo , Especificidad por Sustrato , Triglicéridos/metabolismo
6.
Nat Struct Mol Biol ; 30(6): 824-833, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37231153

RESUMEN

Throughout bacteria, archaea and eukarya, certain tRNA transcripts contain introns. Pre-tRNAs with introns require splicing to form the mature anticodon stem loop. In eukaryotes, tRNA splicing is initiated by the heterotetrameric tRNA splicing endonuclease (TSEN) complex. All TSEN subunits are essential, and mutations within the complex are associated with a family of neurodevelopmental disorders known as pontocerebellar hypoplasia (PCH). Here, we report cryo-electron microscopy structures of the human TSEN-pre-tRNA complex. These structures reveal the overall architecture of the complex and the extensive tRNA binding interfaces. The structures share homology with archaeal TSENs but contain additional features important for pre-tRNA recognition. The TSEN54 subunit functions as a pivotal scaffold for the pre-tRNA and the two endonuclease subunits. Finally, the TSEN structures enable visualization of the molecular environments of PCH-causing missense mutations, providing insight into the mechanism of pre-tRNA splicing and PCH.


Asunto(s)
Endorribonucleasas , Precursores del ARN , Humanos , Precursores del ARN/metabolismo , Microscopía por Crioelectrón , Endorribonucleasas/metabolismo , Empalme del ARN , Intrones , ARN de Transferencia/metabolismo , Archaea , Eucariontes/genética , Conformación de Ácido Nucleico
7.
Wiley Interdiscip Rev RNA ; 13(5): e1717, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35156311

RESUMEN

The splicing of transfer RNA (tRNA) introns is a critical step of tRNA maturation, for intron-containing tRNAs. In eukaryotes, tRNA splicing is a multi-step process that relies on several RNA processing enzymes to facilitate intron removal and exon ligation. Splicing is initiated by the tRNA splicing endonuclease (TSEN) complex which catalyzes the excision of the intron through its two nuclease subunits. Mutations in all four subunits of the TSEN complex are linked to a family of neurodegenerative and neurodevelopmental diseases known as pontocerebellar hypoplasia (PCH). Recent studies provide molecular insights into the structure, function, and regulation of the eukaryotic TSEN complex and are beginning to illuminate how mutations in the TSEN complex lead to neurodegenerative disease. Using new advancements in the prediction of protein structure, we created a three-dimensional model of the human TSEN complex. We review functions of the TSEN complex beyond tRNA splicing by highlighting recently identified substrates of the eukaryotic TSEN complex and discuss mechanisms for the regulation of tRNA splicing, by enzymes that modify cleaved tRNA exons and introns. Finally, we review recent biochemical and animal models that have worked to address the mechanisms that drive PCH and synthesize these studies with previous studies to try to better understand PCH pathogenesis. This article is categorized under: RNA Processing > tRNA Processing RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.


Asunto(s)
Enfermedades Neurodegenerativas , Animales , Enfermedades Cerebelosas , Endorribonucleasas/metabolismo , Humanos , Intrones , Enfermedades Neurodegenerativas/genética , Precursores del ARN/genética , Empalme del ARN , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
Nat Commun ; 12(1): 636, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504779

RESUMEN

Nsp15, a uridine specific endoribonuclease conserved across coronaviruses, processes viral RNA to evade detection by host defense systems. Crystal structures of Nsp15 from different coronaviruses have shown a common hexameric assembly, yet how the enzyme recognizes and processes RNA remains poorly understood. Here we report a series of cryo-EM reconstructions of SARS-CoV-2 Nsp15, in both apo and UTP-bound states. The cryo-EM reconstructions, combined with biochemistry, mass spectrometry, and molecular dynamics, expose molecular details of how critical active site residues recognize uridine and facilitate catalysis of the phosphodiester bond. Mass spectrometry revealed the accumulation of cyclic phosphate cleavage products, while analysis of the apo and UTP-bound datasets revealed conformational dynamics not observed by crystal structures that are likely important to facilitate substrate recognition and regulate nuclease activity. Collectively, these findings advance understanding of how Nsp15 processes viral RNA and provide a structural framework for the development of new therapeutics.


Asunto(s)
Endorribonucleasas/química , Endorribonucleasas/ultraestructura , SARS-CoV-2/enzimología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/ultraestructura , Secuencia de Aminoácidos , Dominio Catalítico , Microscopía por Crioelectrón , Endorribonucleasas/metabolismo , Modelos Químicos , Modelos Moleculares , SARS-CoV-2/química , Uridina Trifosfato/metabolismo , Proteínas no Estructurales Virales/metabolismo
9.
bioRxiv ; 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32803198

RESUMEN

New therapeutics are urgently needed to inhibit SARS-CoV-2, the virus responsible for the on-going Covid-19 pandemic. Nsp15, a uridine-specific endoribonuclease found in all coronaviruses, processes viral RNA to evade detection by RNA-activated host defense systems, making it a promising drug target. Previous work with SARS-CoV-1 established that Nsp15 is active as a hexamer, yet how Nsp15 recognizes and processes viral RNA remains unknown. Here we report a series of cryo-EM reconstructions of SARS-CoV-2 Nsp15. The UTP-bound cryo-EM reconstruction at 3.36 Å resolution provides molecular details into how critical residues within the Nsp15 active site recognize uridine and facilitate catalysis of the phosphodiester bond, whereas the apo-states reveal active site conformational heterogeneity. We further demonstrate the specificity and mechanism of nuclease activity by analyzing Nsp15 products using mass spectrometry. Collectively, these findings advance understanding of how Nsp15 processes viral RNA and provide a structural framework for the development of new therapeutics.

11.
PLoS One ; 10(8): e0135447, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26270534

RESUMEN

Mycobacterium tuberculosis harbors over 160 genes encoding PE/PPE proteins, several of which have roles in the pathogen's virulence. A number of PE/PPE proteins are secreted via Type VII secretion systems known as the ESX secretion systems. One PE protein, LipY, has a triglyceride lipase domain in addition to its PE domain. LipY can regulate intracellular triglyceride levels and is also exported to the cell wall by one of the ESX family members, ESX-5. Upon export, LipY's PE domain is removed by proteolytic cleavage. Studies using cells and crude extracts suggest that LipY's PE domain not only directs its secretion by ESX-5, but also functions to inhibit its enzymatic activity. Here, we attempt to further elucidate the role of LipY's PE domain in the regulation of its enzymatic activity. First, we established an improved purification method for several LipY variants using detergent micelles. We then used enzymatic assays to confirm that the PE domain down-regulates LipY activity. The PE domain must be attached to LipY in order to effectively inhibit it. Finally, we determined that full length LipY and the mature lipase lacking the PE domain (LipYΔPE) have similar melting temperatures. Based on our improved purification strategy and activity-based approach, we concluded that LipY's PE domain down-regulates its enzymatic activity but does not impact the thermal stability of the enzyme.


Asunto(s)
Proteínas Bacterianas/química , Hidrolasas de Éster Carboxílico/química , Mycobacterium tuberculosis/enzimología , Factores de Virulencia/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/química , Sistemas de Secreción Bacterianos/genética , Sistemas de Secreción Bacterianos/metabolismo , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/aislamiento & purificación , Hidrolasas de Éster Carboxílico/metabolismo , Estabilidad de Enzimas , Mycobacterium tuberculosis/genética , Estructura Terciaria de Proteína , Triglicéridos/genética , Triglicéridos/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/aislamiento & purificación , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA